Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production

dc.contributor.authorKandambath Padinjareveetil, Akshay Kumarcs
dc.contributor.authorPerales Rondon, Juan Victorcs
dc.contributor.authorZaoralová, Dagmarcs
dc.contributor.authorOtyepka, Michalcs
dc.contributor.authorAlduhaish, Osamahcs
dc.contributor.authorPumera, Martincs
dc.coverage.issue40cs
dc.coverage.volume15cs
dc.date.accessioned2024-02-20T14:45:53Z
dc.date.available2024-02-20T14:45:53Z
dc.date.issued2023-10-02cs
dc.description.abstractElectrochemical reduction of nitrate into ammonia has lately been identified as one among the promising solutions to address the challenges triggered by the growing global energy demand. Exploring newer electrocatalyst materials is vital to make this process effective and feasible. Recently, metal-organic framework (MOF)-based catalysts are being well investigated for electrocatalytic ammonia synthesis, accounting for their enhanced structural and compositional integrity during catalytic reduction reactions. In this study, we investigate the ability of the PCN-250-Fe-3 MOF toward ammonia production in its pristine and activated forms. The activated MOF catalyst delivered a faradaic efficiency of about 90% at -1 V vs RHE and a yield rate of 2.5 x 10(-4) mol cm(-2) h(-1), while the pristine catalyst delivered a 60% faradaic efficiency at the same potential. Theoretical studies further provide insights into the nitrate reduction reaction mechanism catalyzed by the PCN-250-Fe-3 MOF catalyst. In short, simpler and cost-effective strategies such as pretreatment of electrocatalysts have an upper hand in aggravating the intrinsic material properties, for catalytic applications, when compared to conventional material modification approaches.en
dc.formattextcs
dc.format.extent47294-47306cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationACS applied materials & interfaces. 2023, vol. 15, issue 40, p. 47294-47306.en
dc.identifier.doi10.1021/acsami.3c12822cs
dc.identifier.issn1944-8252cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other186968cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.scopus56211452300cs
dc.identifier.urihttps://hdl.handle.net/11012/245093
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofACS applied materials & interfacescs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsami.3c12822cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1944-8252/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmetal-organic frameworken
dc.subjectPCN-250-Fe-3en
dc.subjectammonia synthesisen
dc.subjectthermal activationen
dc.subjectelectrochemical nitrate reductionen
dc.subjectelectrocatalystsen
dc.titleFe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Productionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-186968en
sync.item.dbtypeVAVen
sync.item.insts2024.02.20 15:45:53en
sync.item.modts2024.02.20 15:12:53en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
padinjareveetiletal2023femofcatalyticnanoarchitectonictowardelectrochemicalammoniaproduction.pdf
Size:
12.63 MB
Format:
Adobe Portable Document Format
Description:
file padinjareveetiletal2023femofcatalyticnanoarchitectonictowardelectrochemicalammoniaproduction.pdf