Deep Learning in Historical Geography

but.event.date25.01.2024cs
but.event.titleJuniorstav 2024cs
dc.contributor.authorVynikal, Jakub
dc.contributor.authorPacina, Jan
dc.date.accessioned2024-05-07T08:53:17Z
dc.date.available2024-05-07T08:53:17Z
dc.date.issued2024-05-07cs
dc.description.abstractIn relation to the rapid development of artificial intelligence, the possibilities of automatic processing of spatial data are increasing. Scanned topographical maps are a valued source of historical information. Neural networks allow us to extract information quickly and efficiently from such data, eliminating the difficult and repetitive work that would otherwise have to be done by a human. The article presents two case studies exploring the possibilities of using deep learning in historical geography. The first one is concerned with detecting and extracting swamps from topographic maps, while the second one attempts to automatically vectorize contours from the State Map 1 : 5 000en
dc.formattextcs
dc.format.extent1-5cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJuniorstav 2024: Proceedings 26th International Scientific Conference Of Civil Engineering, s. 1-5. ISBN 978-80-86433-83-7.cs
dc.identifier.doi10.13164/juniorstav.2024.24097en
dc.identifier.isbn978-80-86433-83-7
dc.identifier.urihttps://hdl.handle.net/11012/245376
dc.language.isoencs
dc.publisherVysoké učení technické v Brně,Fakulta stavebnícs
dc.relation.ispartofJuniorstav 2024: Proceedings 26th International Scientific Conference Of Civil Engineeringcs
dc.relation.urihttps://juniorstav.fce.vutbr.cz/proceedings2024/
dc.rights© Vysoké učení technické v Brně,Fakulta stavebnícs
dc.rights.accessopenAccessen
dc.subjectDeep learningen
dc.subjecthistorical geographyen
dc.subjectsegmentationen
dc.subjectvectorizationen
dc.subjectscanned mapsen
dc.titleDeep Learning in Historical Geographyen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta stavebnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
juniorstav-2024-24097.pdf
Size:
741.62 KB
Format:
Adobe Portable Document Format
Description:
Collections