Diagnostics of Interturn Short Circuits in PMSMs With Online Fault Indicators Estimation

Loading...
Thumbnail Image

Authors

Zezula, Lukáš
Kozovský, Matúš
Blaha, Petr

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

This article presents novel model-based diagnostics of interturn short circuits in permanent magnet synchronous machines that enable estimating fault location and its severity, even during transients. The proposed method utilizes recursive parametric estimation and model comparison approaches cast in a decision-making framework to track motor parameters and fault indicators from a machine's discrete-time model. The discrete-time prototype is derived from an advanced motor model that reflects the stator winding arrangement in a motor's case. The fault detection is then performed by tracking the changes in the estimated probability density function of the electrical parameters, using the Kullback-Leibler divergence. The fault location is subsequently evaluated by performing a recursive comparison of the predefined fault models in the different phases, utilizing a growing-window approach. Ultimately, a parametric estimation algorithm applied to the fault current model allows identifying the fault severity. The diagnostic algorithm has been validated via laboratory experiments, and its capabilities are compared with other approaches enabling severity estimation.
This article presents novel model-based diagnostics of interturn short circuits in permanent magnet synchronous machines that enable estimating fault location and its severity, even during transients. The proposed method utilizes recursive parametric estimation and model comparison approaches cast in a decision-making framework to track motor parameters and fault indicators from a machine's discrete-time model. The discrete-time prototype is derived from an advanced motor model that reflects the stator winding arrangement in a motor's case. The fault detection is then performed by tracking the changes in the estimated probability density function of the electrical parameters, using the Kullback-Leibler divergence. The fault location is subsequently evaluated by performing a recursive comparison of the predefined fault models in the different phases, utilizing a growing-window approach. Ultimately, a parametric estimation algorithm applied to the fault current model allows identifying the fault severity. The diagnostic algorithm has been validated via laboratory experiments, and its capabilities are compared with other approaches enabling severity estimation.

Description

Citation

IEEE Transactions on Industrial Electronics. 2024, vol. 71, issue 11, p. 15001-15011.
https://ieeexplore.ieee.org/document/10449893

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO