Neural Networks in Antennas and Microwaves: A Practical Approach
dc.contributor.author | Raida, Zbyněk | |
dc.coverage.issue | 4 | cs |
dc.coverage.volume | 10 | cs |
dc.date.accessioned | 2016-05-02T12:06:22Z | |
dc.date.available | 2016-05-02T12:06:22Z | |
dc.date.issued | 2001-12 | cs |
dc.description.abstract | Neural networks are electronic systems which can be trained to remember behavior of a modeled structure in given operational points, and which can be used to approximate behavior of the structure out of the training points. These approximation abilities of neural nets are demonstrated on modeling a frequency-selective surface, a microstrip transmission line and a microstrip dipole. Attention is turned to the accuracy and to the efficiency of neural models. The association of neural models and genetic algorithms, which can provide a global design tool, is discussed. | en |
dc.format | text | cs |
dc.format.extent | 24-35 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Radioengineering. 2001, vol. 10, č. 4, s. 24-35. ISSN 1210-2512 | cs |
dc.identifier.issn | 1210-2512 | |
dc.identifier.uri | http://hdl.handle.net/11012/58207 | |
dc.language.iso | en | cs |
dc.publisher | Společnost pro radioelektronické inženýrství | cs |
dc.relation.ispartof | Radioengineering | cs |
dc.relation.uri | http://www.radioeng.cz/fulltexts/2001/01_04_24_35.pdf | cs |
dc.rights | Creative Commons Attribution 3.0 Unported License | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | en |
dc.subject | Neural networks | en |
dc.subject | genetic algorithms | en |
dc.subject | planar transmis-sion lines | en |
dc.subject | frequency selective surfaces | en |
dc.subject | microstrip antennas | en |
dc.subject | modeling | en |
dc.subject | optimization | en |
dc.title | Neural Networks in Antennas and Microwaves: A Practical Approach | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta eletrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 01_04_24_35.pdf
- Size:
- 619.78 KB
- Format:
- Adobe Portable Document Format
- Description: