On a Class of Functional Differential Equations with Symmetries

dc.contributor.authorDilna, Nataliyacs
dc.contributor.authorFečkan, Michalcs
dc.contributor.authorRontó, Andráscs
dc.coverage.issue12cs
dc.coverage.volume11cs
dc.date.issued2019-11-27cs
dc.description.abstractIt is shown that a class of symmetric solutions of scalar non-linear functional differential equations can be investigated by using the theory of boundary value problems. We reduce the question to a two-point boundary value problem on a bounded interval and present several conditions ensuring the existence of a unique symmetric solution.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSymmetry. 2019, vol. 11, issue 12, p. 1-13.en
dc.identifier.doi10.3390/sym11121456cs
dc.identifier.issn2073-8994cs
dc.identifier.orcid0000-0002-4265-7786cs
dc.identifier.other163758cs
dc.identifier.researcheridD-5449-2014cs
dc.identifier.urihttp://hdl.handle.net/11012/195686
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofSymmetrycs
dc.relation.urihttps://www.mdpi.com/2073-8994/11/12/1456cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2073-8994/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfunctional differential equationen
dc.subjectargument deviationen
dc.subjectperiodicen
dc.subjectantiperiodicen
dc.subjectsymmetryen
dc.subjecttwo-point problemen
dc.subjectunique solvabilityen
dc.titleOn a Class of Functional Differential Equations with Symmetriesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-163758en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:43:26en
sync.item.modts2025.01.17 16:50:11en
thesis.grantorVysoké učení technické v Brně. Fakulta podnikatelská. Ústav informatikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
symmetry1101456v2.pdf
Size:
343.07 KB
Format:
Adobe Portable Document Format
Description:
symmetry1101456v2.pdf