Generativní oponentní neuronové sítě zachovávající identitu otisku prstu

Loading...
Thumbnail Image
Date
Authors
Kačur, Ján
ORCID
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Táto práca sa sústredí na generovanie latentných odtlačkov prstov za pomoci Generatívnych oponentných neurónových sietí. Hlavnou úlohou je generovanie viacerých verzií latentných odtlačkov z čistého odtlačku, s rovnakou identitou. Identitu a štýl odtlačku by malo byť možné osobitne meniť. Zvolený postup sa zakladá na modeli AugNet. Navrhnutý algoritmus generuje latentné odtlačky z čistých binarizovaných odtlačkov a náhodného vektora, reprezentujúceho skreslenie, resp. štýl. V generátore sú použité AdaIN bloky na spojenie štýlu so vstupným odtlačkom. Je testovaných viacero trénovacích algoritmov, z ktorých WGAN-GP dosahuje najlepšie výsledky. Jednotlivé modely sú porovnávané kombináciou metrík FID a Rank-1 accuracy pri porovnávaní generovaných obrázkov s originálnymi vstupnými binarizovanými odtlačkami. Najlepšie modely sú vybrané ako Pareto optimálne kombinácie týchto 2 metrík.
This thesis focuses on generating latent fingerprints using Generative adversarial networks. The main objective is to generate multiple latent fingerprints from the clean fingerprint, with the same identity. The identity and the style should also be controllable separately. The chosen approach is based on AugNet model. Designed algorithm generates latent fingerprints from clean binarized fingerprint, and a random vector encoding distortions, i.e style. In the generator, AdaIN blocks are used to incorporate distortions into the input fingerprint. Various training algorithms are tested, with WGAN-GP performing the best. Individual models are compared using a combination of FID, and Rank-1 accuracy on matching generated images to original input binarized fingerprints. Best performing models are selected as a Pareto optimal combinations of these 2 metrics.
Description
Citation
KAČUR, J. Generativní oponentní neuronové sítě zachovávající identitu otisku prstu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Strojové učení
Comittee
doc. Ing. Lukáš Burget, Ph.D. (předseda) doc. Ing. Martin Čadík, Ph.D. (člen) doc. Ing. Vladimír Janoušek, Ph.D. (člen) Ing. Michal Hradiš, Ph.D. (člen) Ing. Jaroslav Rozman, Ph.D. (člen) Ing. Tomáš Milet, Ph.D. (člen)
Date of acceptance
2023-06-16
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO