Chaotic states of transistor-based tuned-collector oscillator
| dc.contributor.author | Petržela, Jiří | cs |
| dc.coverage.issue | 9 | cs |
| dc.coverage.volume | 11 | cs |
| dc.date.issued | 2023-05-08 | cs |
| dc.description.abstract | This brief paper shows that robust chaotic behavior can be detected within a tuned-collector single-stage transistor-based oscillator. The content of this work also contributes to the problem of chaos localization in simplified mathematical model of standard analog building block. Searching for chaos is performed via numerical optimization routine applied onto the principal schematic of oscillator where generalized bipolar transistor is modelled as a two-port described by impedance as well as admittance matrix. In both cases, the presence of dense chaotic attractor is proved via calculation of the largest Lyapunov exponent, while its structural stability is validated by real measurement, i.e., visualization of captured oscilloscope screenshots. | en |
| dc.description.abstract | This brief paper shows that robust chaotic behavior can be detected within a tuned-collector single-stage transistor-based oscillator. The content of this work also contributes to the problem of chaos localization in simplified mathematical model of standard analog building block. Searching for chaos is performed via numerical optimization routine applied onto the principal schematic of oscillator where generalized bipolar transistor is modelled as a two-port described by impedance as well as admittance matrix. In both cases, the presence of dense chaotic attractor is proved via calculation of the largest Lyapunov exponent, while its structural stability is validated by real measurement, i.e., visualization of captured oscilloscope screenshots. | en |
| dc.format | text | cs |
| dc.format.extent | 1-13 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Mathematics. 2023, vol. 11, issue 9, p. 1-13. | en |
| dc.identifier.doi | 10.3390/math11092213 | cs |
| dc.identifier.issn | 2227-7390 | cs |
| dc.identifier.orcid | 0000-0001-5286-9574 | cs |
| dc.identifier.other | 183456 | cs |
| dc.identifier.researcherid | DZG-2188-2022 | cs |
| dc.identifier.scopus | 9333762000 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/212506 | |
| dc.language.iso | en | cs |
| dc.publisher | MDPI | cs |
| dc.relation.ispartof | Mathematics | cs |
| dc.relation.uri | https://www.mdpi.com/2227-7390/11/9/2213 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2227-7390/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | chaos | en |
| dc.subject | chaotic oscillator | en |
| dc.subject | transistor-based circuit | en |
| dc.subject | two-port model | en |
| dc.subject | lyapunov exponents | en |
| dc.subject | admittance parameters | en |
| dc.subject | impedance parameters | en |
| dc.subject | forward trans-conductance | en |
| dc.subject | chaos | |
| dc.subject | chaotic oscillator | |
| dc.subject | transistor-based circuit | |
| dc.subject | two-port model | |
| dc.subject | lyapunov exponents | |
| dc.subject | admittance parameters | |
| dc.subject | impedance parameters | |
| dc.subject | forward trans-conductance | |
| dc.title | Chaotic states of transistor-based tuned-collector oscillator | en |
| dc.title.alternative | Chaotic states of transistor-based tuned-collector oscillator | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-183456 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:11:34 | en |
| sync.item.modts | 2025.10.14 09:48:32 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektroniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- mathematics1102213.pdf
- Size:
- 13.65 MB
- Format:
- Adobe Portable Document Format
- Description:
- mathematics1102213.pdf
