Damping enhancement in YIG at millikelvin temperatures due to GGG substrate

dc.contributor.authorSerha, Rostyslav O.cs
dc.contributor.authorVoronov, Andreycs
dc.contributor.authorSchmoll, Davidcs
dc.contributor.authorKlingbeil, Rebeccacs
dc.contributor.authorKnauer, Sebastiancs
dc.contributor.authorKoraltan, Sabrics
dc.contributor.authorPribytova, Ekaterinacs
dc.contributor.authorLindner, Morriscs
dc.contributor.authorReimann, Timmycs
dc.contributor.authorDubs, Carstencs
dc.contributor.authorClaas, Abertcs
dc.contributor.authorVerba, Romancs
dc.contributor.authorUrbánek, Michalcs
dc.contributor.authorSuess, Dietercs
dc.contributor.authorChumak, Andrii V.cs
dc.coverage.issue3cs
dc.coverage.volume5cs
dc.date.accessioned2025-11-19T14:32:07Z
dc.date.available2025-11-19T14:32:07Z
dc.date.issued2025-03-01cs
dc.description.abstractQuantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50 K poses a challenge for quantum applications. Here, we study the damping in a 97 nm-thick YIG film on a -thick GGG substrate at temperatures down to 30 mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18 GHz and temperatures below 2 K and frequencies above 10 GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.en
dc.description.abstractQuantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50 K poses a challenge for quantum applications. Here, we study the damping in a 97 nm-thick YIG film on a -thick GGG substrate at temperatures down to 30 mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18 GHz and temperatures below 2 K and frequencies above 10 GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.en
dc.formattextcs
dc.format.extent100025-10025cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials Today Quantum. 2025, vol. 5, issue 3, p. 100025-10025.en
dc.identifier.doi10.1016/j.mtquan.2025.100025cs
dc.identifier.issn2950-2578cs
dc.identifier.orcid0009-0006-6506-9238cs
dc.identifier.orcid0000-0003-0072-2073cs
dc.identifier.other197895cs
dc.identifier.researcheridM-7120-2019cs
dc.identifier.urihttps://hdl.handle.net/11012/255629
dc.language.isoencs
dc.relation.ispartofMaterials Today Quantumcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2950257825000034cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2950-2578/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectFMR at millikelvin temperaturesen
dc.subjectQuantum magnonicsen
dc.subjectYttrium iron garneten
dc.subjectFerrimagnet/paramagnet bilayeren
dc.subjectMagnetic dampingen
dc.subjectFMR at millikelvin temperatures
dc.subjectQuantum magnonics
dc.subjectYttrium iron garnet
dc.subjectFerrimagnet/paramagnet bilayer
dc.subjectMagnetic damping
dc.titleDamping enhancement in YIG at millikelvin temperatures due to GGG substrateen
dc.title.alternativeDamping enhancement in YIG at millikelvin temperatures due to GGG substrateen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197895en
sync.item.dbtypeVAVen
sync.item.insts2025.11.19 15:32:02en
sync.item.modts2025.11.19 14:32:54en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2950257825000034main.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2950257825000034main.pdf