Všesměrová detekce objektů

Loading...
Thumbnail Image

Date

Authors

Lohniský, Michal

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce se zabývá modifikací extrakce příznaků a učícího procesu detektorů pro všesměrovou detekci objektů. Jde o přidání nových kanálů u detektorů založených na "Aggregate channel features". Nové kanály jsou tvořeny filtrováním obrazu jádry z autoenkodérů a následným použitím nelineární funkce sigmoidy. Experimenty ukazují, že nové kanály jsou úspěšné, avšak výpočetně náročnější než ostatní. Jsou zde proto diskutovány možnosti, jak výpočet urychlit. Dále je v této práci vyhodnocen uměle vytvořený dataset automobilů a je zde diskutován jeho malý přínos při jeho aplikaci na několik detektorů.
This thesis focuses on modification of feature extraction and multiview object detection learning process. We add new channels to detectors based on the "Aggregate channel features" framework. These new channels are created by filtering the picture by kernels from autoencoders followed by nonlinear function processing. Experiments show that these channels are effective in detection but they are also more computationally expensive. The thesis therefore discusses possibilities for improvements. Finally the thesis evaluates an artificial car dataset and discusses its small benefit on several detectors.

Description

Citation

LOHNISKÝ, M. Všesměrová detekce objektů [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2014.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Počítačová grafika a multimédia

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) prof. RNDr. Alexandr Meduna, CSc. (místopředseda) doc. Dr. Ing. Otto Fučík (člen) prof. Ing. Adam Herout, Ph.D. (člen) Mgr. Ing. Pavel Očenášek, Ph.D. (člen) doc. Ing. Petr Sedlák, Ph.D. (člen)

Date of acceptance

2014-06-23

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm "B". Otázky u obhajoby: Jaká je výpočetní náročnost jednotlivých částí řešení? Jaký je odhad rychlosti při optimální implementaci? Jaká část metody je její největší slabinou? Jaké jsou možnosti řešení tohoto problému?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO