Experimental Study of Mechanical Wave Propagation in Solidifying Cement-Based Composites

Loading...
Thumbnail Image

Authors

Jakubka, Luboš
Topolář, Libor
Nekorancová, Anna
Dvořák, Richard
Hrabová, Kristýna
Černý, Felix
Skibicky, Szymon
Pazdera, Luboš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

In this paper, a new measurement procedure is presented as an experimental study. In this experimental study, a measurement system using the pass-through pulsed ultrasonic method was used. The pilot application of the measurement setup was to monitor mechanical wave changes during the solidification and hardening of fine-grained cement-based composites. The fine-grained composites had different water–cement ratios. The measured results show apparent differences in the recorded mechanical wave parameters. Significant differences were observed in the waveforms of the amplitude increase in the passing mechanical waves. At the same time, the frequency spectra of the five most dominant frequencies are presented, where the frequency lines are clear, indicating the quality of the hydration process. Based on the results, it can be concluded that the new method is usable for fine-grained cement-based materials but is not limited to that. The advantages of this method are its high variability and non-destructive character. The experimental study also outlines the possible future applications of the pulsed passage ultrasonic method.
In this paper, a new measurement procedure is presented as an experimental study. In this experimental study, a measurement system using the pass-through pulsed ultrasonic method was used. The pilot application of the measurement setup was to monitor mechanical wave changes during the solidification and hardening of fine-grained cement-based composites. The fine-grained composites had different water–cement ratios. The measured results show apparent differences in the recorded mechanical wave parameters. Significant differences were observed in the waveforms of the amplitude increase in the passing mechanical waves. At the same time, the frequency spectra of the five most dominant frequencies are presented, where the frequency lines are clear, indicating the quality of the hydration process. Based on the results, it can be concluded that the new method is usable for fine-grained cement-based materials but is not limited to that. The advantages of this method are its high variability and non-destructive character. The experimental study also outlines the possible future applications of the pulsed passage ultrasonic method.

Description

Citation

Materials. 2024, vol. 17, issue 23, p. 1-18.
https://www.mdpi.com/1996-1944/17/23/5971

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO