Mitochondria morphology and membrane potential under stress conditions

Loading...
Thumbnail Image

Date

Authors

Ezati, Masoumeh
Zumberg, Inna
Cmiel, Vratislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Mitochondria, organelles found in the cytoplasm of almost all eukaryotic cells, generate large quantities of energy in the form of adenosine triphosphate (ATP). In addition to producing energy, mitochondria store calcium for cell signaling activities and play an important role in maintenance of ionic balance. Mitochondria, however, are highly sensitive to any kind of stress in which they mainly response by disturbance of respiration, reactive oxygen species (ROS) production and release of cytochrome c into the cytoplasm. Osmotic stress, in particular, generates ROS that degrade lipids, proteins, and DNA. High levels of salt concentration can cause an imbalance in cellular ion homeostasis that results in ion toxicity and osmotic stress. This study aims to investigate possible effects of KCl and NaCl on Bone marrow-derived (MSCs) mitochondria membrane potential (MMP) and morphology. The results indicated that KCl and NaCl of salt concentration can cause an imbalance in cellular ion homeostasis that results in ion toxicity and osmotic stress. This study aims to investigate possible effects of KCl and NaCl on MSCs mitochondria membrane potential (MMP) and morphology. The results indicated that KCl and NaCl decreased the potential and changed the morphology of mitochondria membrane compared to cells growing in normal condition.

Description

Citation

Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 432-436. ISBN 978-80-214-6029-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO