Insight into the response time of fail-safe magnetorheological damper

dc.contributor.authorJeniš, Filipcs
dc.contributor.authorKubík, Michalcs
dc.contributor.authorMacháček, Ondřejcs
dc.contributor.authorŠebesta, Karelcs
dc.contributor.authorStrecker, Zbyněkcs
dc.coverage.issue30cs
dc.coverage.volume1cs
dc.date.issued2020-10-19cs
dc.description.abstractThe significant problem of magnetorheological (MR) dampers is their poor fail-safe ability. In the case of power supply failure, the damper remains in a low damping state which is dangerous for several technical applications. This can be solved by accommodating a permanent magnet to the magnetic circuit of the damper. Currently, the MR dampers are used in progressive semiactive (S/A) control of suspension systems. The dynamics (force response time) of the damper is an important parameter that affects the performance of semiactive control. The main goal of this paper is to introduce the dynamic behavior of MR damper with a permanent magnet. The damper design with the permanent magnet in the magnetic circuit, transient magnetic simulation including magnetic hysteresis and eddy currents, and experiments are presented. The magnetic field response time and MR damper force response time are measured and also determined from magnetic simulation. The permanent magnet significantly influences the MR damper dynamics. The decrease of the damping force from a fail-safe state – medium damping to off-state – low damping is significantly faster (2 ms, -1A) than the increase to on-state – high damping (12 ms, 1A). The exact value is depending on the electric current magnitude and piston velocity. The damper achieved fail-safe damping force approximately 1/3 of the maximum damping force. The exact value of the fail-safe force is magnetization history-dependent. The maximum dynamic force range is 8.5 which is comparable with the common design of MR damper.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSmart Materials and Structures. 2020, vol. 1, issue 30, p. 1-13.en
dc.identifier.doi10.1088/1361-665X/abc26fcs
dc.identifier.issn1361-665Xcs
dc.identifier.orcid0000-0002-1753-1508cs
dc.identifier.orcid0000-0003-0105-2921cs
dc.identifier.orcid0000-0003-4720-6375cs
dc.identifier.orcid0000-0001-5779-2393cs
dc.identifier.orcid0000-0002-1598-487Xcs
dc.identifier.other165636cs
dc.identifier.researcheridAAC-4463-2021cs
dc.identifier.researcheridK-3568-2014cs
dc.identifier.researcheridHNI-6691-2023cs
dc.identifier.researcheridV-8641-2019cs
dc.identifier.urihttp://hdl.handle.net/11012/196765
dc.language.isoencs
dc.publisherIOP Publishingcs
dc.relation.ispartofSmart Materials and Structurescs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1361-665X/abc26fcs
dc.rights(C) IOP Publishingcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1361-665X/cs
dc.subjectmagnetorheological valveen
dc.subjectMR damperen
dc.subjectresponse timeen
dc.subjectpermanent magneten
dc.subjectfail-safeen
dc.subjecttransient responseen
dc.subjectdamper dynamicsen
dc.titleInsight into the response time of fail-safe magnetorheological damperen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-165636en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:48:37en
sync.item.modts2025.01.17 15:25:51en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
abc26faccepted.pdf
Size:
2.64 MB
Format:
Adobe Portable Document Format
Description:
abc26faccepted.pdf