New Current-Mode Class 1 Frequency-Agile Filter for Multi Protocol GPS Application

Loading...
Thumbnail Image

Authors

Atasoyu, Mesut
Metin, Bilgin
Kuntman, Hakan
Herencsár, Norbert

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Kaunas University of Technology
Altmetrics

Abstract

Recently, due to their cost, accuracy, and integrability of conventional current-mode (CM) on-chip integrated filters working in radio frequency region, frequency-agile filters (FAFs) have started taking great interest in multi-standard transceivers, encrypted communication, cognitive radio, software defined radio structures, and global positioning system applications. By following the most recent trend in the literature, this paper proposes the first class 1 CM FAF using high-performance analog building block so-called positive-type electronically controllable second-generation current conveyor (ECCII+), two resistors, and two grounded capacitors. The theory and the proposed 2nd-order CM FAF are supported by both regular and post-layout simulations performed using CADENCE Spectre tool with TSMC 0.18 µm level-49 CMOS technology process BSIM3v3 parameters. Furthermore, corner and Monte-Carlo analyses are given to prove the accuracy of centre frequency of the CM FAF.
Recently, due to their cost, accuracy, and integrability of conventional current-mode (CM) on-chip integrated filters working in radio frequency region, frequency-agile filters (FAFs) have started taking great interest in multi-standard transceivers, encrypted communication, cognitive radio, software defined radio structures, and global positioning system applications. By following the most recent trend in the literature, this paper proposes the first class 1 CM FAF using high-performance analog building block so-called positive-type electronically controllable second-generation current conveyor (ECCII+), two resistors, and two grounded capacitors. The theory and the proposed 2nd-order CM FAF are supported by both regular and post-layout simulations performed using CADENCE Spectre tool with TSMC 0.18 µm level-49 CMOS technology process BSIM3v3 parameters. Furthermore, corner and Monte-Carlo analyses are given to prove the accuracy of centre frequency of the CM FAF.

Description

Citation

Elektronika Ir Elektrotechnika. 2015, vol. 21, issue 5, p. 35-39.
http://www.vpa.ktu.lt/index.php/elt/article/view/13323

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO