Deep learning control of THz QCLs
dc.contributor.author | Limbacher, Benedikt | cs |
dc.contributor.author | Schönhuber, Sebastian | cs |
dc.contributor.author | Kainz, Martin A. | cs |
dc.contributor.author | Bachelard, Nicolas | cs |
dc.contributor.author | Andrews, Aaron Maxwell | cs |
dc.contributor.author | Detz, Hermann | cs |
dc.contributor.author | Strasser, Gottfried | cs |
dc.contributor.author | Darmo, Juraj | cs |
dc.contributor.author | Unterrainer, Karl | cs |
dc.coverage.issue | 15 | cs |
dc.coverage.volume | 29 | cs |
dc.date.accessioned | 2021-12-01T15:56:46Z | |
dc.date.available | 2021-12-01T15:56:46Z | |
dc.date.issued | 2021-07-19 | cs |
dc.description.abstract | Artificial neural networks are capable of fitting highly non-linear and complex systems. Such complicated systems can be found everywhere in nature, including the non-linear interaction between optical modes in laser resonators. In this work, we demonstrate artificial neural networks trained to model these complex interactions in the cavity of a Quantum Cascade Random Laser. The neural networks are able to predict modulation schemes for desired laser spectra in real-time. This radically novel approach makes it possible to adapt spectra to individual requirements without the need for lengthy and costly simulation and fabrication iterations. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. | en |
dc.format | text | cs |
dc.format.extent | 23611-23621 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | OPTICS EXPRESS. 2021, vol. 29, issue 15, p. 23611-23621. | en |
dc.identifier.doi | 10.1364/OE.430679 | cs |
dc.identifier.issn | 1094-4087 | cs |
dc.identifier.other | 172324 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/203035 | |
dc.language.iso | en | cs |
dc.publisher | Optica Publishing Group | cs |
dc.relation.ispartof | OPTICS EXPRESS | cs |
dc.relation.uri | https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-15-23611&id=453190 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1094-4087/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | QUANTUM CASCADE LASERS | en |
dc.subject | TERAHERTZ | en |
dc.subject | BAND | en |
dc.subject | IMAGE | en |
dc.subject | LIGHT | en |
dc.title | Deep learning control of THz QCLs | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-172324 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2021.12.01 16:56:46 | en |
sync.item.modts | 2021.12.01 16:15:53 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Epitaxní materiály a nanostruktury | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- oe291523611.pdf
- Size:
- 3.56 MB
- Format:
- Adobe Portable Document Format
- Description:
- oe291523611.pdf