Prořezávání hlubokých neuronových sítí pro rozpoznávání textu

Loading...
Thumbnail Image

Date

Authors

Petráš, Simon

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Dokument predstavuje prácu na prerezávanie neurónovej siete slúžiacej na rozpoznávanie ručne písaného textu. Cieľom práce je vytvoriť program na prerezávanie danej siete. Prerezávali sme dva typy neurónových sieti a to konvolučné a rekurentné neurónové siete. Pri prerezávaní konvolučnej časti bolo experimentované s rôznymi kritériami výberu parametrov. Výsledkom práce je model, ktorý dosahuje 20% zrýchlenie pri znížení presnosti siete iba o 0.4%, ale aj množstvo iných modelov, ktoré sú rýchlejšie ale nadobúdajú aj vyššej nepresnosti.
This document is a work on pruning neural network for handwriting recognition. The aim of the work is to create a program for pruning the network. We prune two types of neural networks, namely convolutional and recurrent neural networks. During the pruning of the convolution part, various criteria of parameter selection were experimented with. The result of the work is a model that achieves 20% acceleration while increasing the network inaccuracy by only 0.4%, but also a number of other models that are faster but also acquire higher inaccuracies.

Description

Citation

PETRÁŠ, S. Prořezávání hlubokých neuronových sítí pro rozpoznávání textu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2022.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) doc. Ing. Lukáš Burget, Ph.D. (místopředseda) doc. Mgr. Lukáš Holík, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) Ing. Jaroslav Dytrych, Ph.D. (místopředseda) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)

Date of acceptance

2022-06-14

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm C. Otázky u obhajoby: Při prořezávání se jde od začátku sítě? Statistiky pro prořezání filtrů (L1, L2, std) se počítají i z kanálů filtru, které již byly prořezané v předchozí vrstvě? Jak je důležité L1, L2, std, když na výstupy konvolučních vrstev jsou aplikovány normalizační vrstvy, které můžou každý kanál libovolně škálovat? Jaké je vaše vysvětlení nízké úspěšnosti sítí s prořezanými rekurentními vrstvami? Jak jsou v modelu tyto čtyři vrstvy propojené? Respektujete toto propojení při prořezávání?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO