An evaluation of total project risk based on fuzzy logic

Loading...
Thumbnail Image

Authors

Doskočil, Radek

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vilnius Gediminas Technical University
Altmetrics

Abstract

The article deals with the use of fuzzy logic as a support of evaluation of total project risk. A brief description of actual project risk management, fuzzy set theory, fuzzy logic and the process of calculation is given. The major goal of this paper is to present am new expert decision-making fuzzy model for evaluating total project risk. This fuzzy model based on RIPRAN method. RIPRAN (RIsk PRoject ANalysis) method is an empirical method for the analysis of project risks. The Fuzzy Logic Toolbox in MATLAB software was used to create the decision-making fuzzy model. The advantage of the fuzzy model is the ability to transform the input variables The Number of Sub-Risks (NSR) and The Total Value of Sub-Risks (TVSR) to linguistic variables, as well as linguistic evaluation of the Total Value of Project Risk (TVPR) – output variable. With this approach it is possible to simulate the risk value and uncertainty that are always associated with real projects. The scheme of the model, rule block, attributes and their membership functions are mentioned in a case study. The use of fuzzy logic is a particular advantage in decision-making processes where description by algorithms is extremely difficult and criteria are multiplied.
The article deals with the use of fuzzy logic as a support of evaluation of total project risk. A brief description of actual project risk management, fuzzy set theory, fuzzy logic and the process of calculation is given. The major goal of this paper is to present am new expert decision-making fuzzy model for evaluating total project risk. This fuzzy model based on RIPRAN method. RIPRAN (RIsk PRoject ANalysis) method is an empirical method for the analysis of project risks. The Fuzzy Logic Toolbox in MATLAB software was used to create the decision-making fuzzy model. The advantage of the fuzzy model is the ability to transform the input variables The Number of Sub-Risks (NSR) and The Total Value of Sub-Risks (TVSR) to linguistic variables, as well as linguistic evaluation of the Total Value of Project Risk (TVPR) – output variable. With this approach it is possible to simulate the risk value and uncertainty that are always associated with real projects. The scheme of the model, rule block, attributes and their membership functions are mentioned in a case study. The use of fuzzy logic is a particular advantage in decision-making processes where description by algorithms is extremely difficult and criteria are multiplied.

Description

Citation

Business: Theory and Practice. 2016, vol. 17, issue 1, p. 23-31.
https://journals.vgtu.lt/index.php/BTP/article/view/8201

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO