Matching Low Viscosity with Enhanced Conductivity in Vat Photopolymerization 3D Printing: Disparity in the Electric and Rheological Percolation Thresholds of Carbon-Based Nanofillers Is Controlled by the Matrix Type and Filler Dispersion

dc.contributor.authorSevriugina, Veronikacs
dc.contributor.authorPavliňák, Davidcs
dc.contributor.authorOndreáš, Františekcs
dc.contributor.authorJašek, Ondřejcs
dc.contributor.authorŠtaffová, Martinacs
dc.contributor.authorLepcio, Petrcs
dc.coverage.issue48cs
dc.coverage.volume8cs
dc.date.issued2023-11-25cs
dc.description.abstractThis study investigated the impact of carbonaceous fillers (carbon black, multiwalled carbon nanotubes, graphene, and highly defective graphene) on aromatic and nonaromatic photopolymer resins' properties, such as viscosity, long-term stability, complex permittivity, curing efficiency, final conversion, storage modulus, heat deflection and glass transition temperatures, network density, and DC resistivity. The presented results also highlight challenges that must be addressed in designing and processing carbonaceous filler-based 3D-printed photopolymer resins. The improved dielectric and electrical properties were closely tied to the dispersion quality and filler-matrix affinity. It favored the enhanced dispersion of anisotropic fillers (nanotubes) in a compatible matrix above their percolation threshold. On the other hand, the dispersed filler worsens printability due to the elevated viscosity and deteriorated penetration depth. Nonetheless, electrical and rheological percolation was found at different filler concentrations. This window of despaired percolation combines highly enhanced conductivity with only mildly increased viscosity and good printability.en
dc.formattextcs
dc.format.extent45566-45577cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationACS OMEGA. 2023, vol. 8, issue 48, p. 45566-45577.en
dc.identifier.doi10.1021/acsomega.3c05683cs
dc.identifier.issn2470-1343cs
dc.identifier.orcid0000-0001-9669-7946cs
dc.identifier.orcid0000-0003-3845-1766cs
dc.identifier.orcid0000-0002-3586-9764cs
dc.identifier.orcid0000-0002-7056-5571cs
dc.identifier.other187398cs
dc.identifier.researcheridM-7529-2015cs
dc.identifier.researcheridAAC-2596-2019cs
dc.identifier.researcheridAAB-9822-2019cs
dc.identifier.scopus56226267000cs
dc.identifier.scopus55990617200cs
dc.identifier.scopus55991983000cs
dc.identifier.urihttp://hdl.handle.net/11012/245175
dc.language.isoencs
dc.publisherAMER CHEMICAL SOCcs
dc.relation.ispartofACS OMEGAcs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsomega.3c05683cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2470-1343/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMOLECULAR MOBILITYen
dc.subjectNANOCOMPOSITESen
dc.subjectSPECTROSCOPYen
dc.subjectPARAMETERSen
dc.subjectNANOTUBESen
dc.titleMatching Low Viscosity with Enhanced Conductivity in Vat Photopolymerization 3D Printing: Disparity in the Electric and Rheological Percolation Thresholds of Carbon-Based Nanofillers Is Controlled by the Matrix Type and Filler Dispersionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-187398en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:51:20en
sync.item.modts2025.01.17 15:19:37en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sevriuginaetal2023matchinglowviscositywithenhancedconductivityinvatphotopolymerization3dprinting.pdf
Size:
7.06 MB
Format:
Adobe Portable Document Format
Description:
file sevriuginaetal2023matchinglowviscositywithenhancedconductivityinvatphotopolymerization3dprinting.pdf