True pinch mode of magnetorheological fluids

dc.contributor.authorSapinski, Bogdancs
dc.contributor.authorMacháček, Ondřejcs
dc.contributor.authorKubík, Michalcs
dc.contributor.authorGoldasz, Januszcs
dc.contributor.authorŽáček, Jiřícs
dc.contributor.authorBańkosz, Wojciechcs
dc.coverage.issue11cs
dc.coverage.volume33cs
dc.date.accessioned2025-04-04T11:56:45Z
dc.date.available2025-04-04T11:56:45Z
dc.date.issued2024-10-29cs
dc.description.abstractMagnetorheological (MR) fluids are representatives of smart materials. They react to magnetic fields by developing a yield stress. The effect has been employed in real-world applications such as automotive chassis systems or optical finishing. By convention, MR devices can be operated in at least one of the fundamental modes: flow, shear, squeeze, gradient pinch of which the former has been the least studied and understood. In pinch mode, the material in the flow channel is exposed to non-uniform magnetic fields in the direction parallel to fluid flow. As a result, only the volume of MR fluid near the channel walls are energized to modify the particular material property (yield stress). The result is the channel's effective diameter change. The behavior of the material in pinch mode is unique and unseen in the other controllable fluids. To study the material's characteristics in the specific mode, the authors developed a novel circuit concept for energizing the material in an effort to achieve the 'true-zero' pinch mode magnetic behavior. Contrary to the existing pinch mode valve concepts, the concept valve allows to achieve zero magnetic flux density in the center of the flow channel regardless of the current level. To test the hypothesis a prototype valve was modeled, manufactured and tested across a range of external (flow rate, current/magnetic flux) stimuli. The obtained results yield sufficient evidence proven by results of magnetic simulations to support the underlying hypothesis. The experimental results illustrate the pinch mode type behaviour, i.e. the slope change in the pressure vs flow rate characteristics.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSMART MATERIALS & STRUCTURES. 2024, vol. 33, issue 11, p. 1-11.en
dc.identifier.doi10.1088/1361-665X/ad88c1cs
dc.identifier.issn0964-1726cs
dc.identifier.orcid0000-0003-4720-6375cs
dc.identifier.orcid0000-0003-0105-2921cs
dc.identifier.orcid0000-0002-2883-6702cs
dc.identifier.other190038cs
dc.identifier.researcheridHNI-6691-2023cs
dc.identifier.researcheridK-3568-2014cs
dc.identifier.researcheridABG-2621-2021cs
dc.identifier.urihttps://hdl.handle.net/11012/250780
dc.language.isoencs
dc.publisherIOP publishingcs
dc.relation.ispartofSMART MATERIALS & STRUCTUREScs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1361-665X/ad88c1cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0964-1726/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmagnetorheologicalen
dc.titleTrue pinch mode of magnetorheological fluidsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-190038en
sync.item.dbtypeVAVen
sync.item.insts2025.04.04 13:56:45en
sync.item.modts2025.04.04 09:32:07en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sapinski_2024.pdf
Size:
4.93 MB
Format:
Adobe Portable Document Format
Description:
file Sapinski_2024.pdf