Multiplicity of solutions for nonlinear coercive problems

dc.contributor.authorDiblík, Josefcs
dc.contributor.authorGalewski, Marekcs
dc.contributor.authorRadulescu, Vicentiucs
dc.contributor.authorŠmarda, Zdeněkcs
dc.coverage.issue1cs
dc.coverage.volume528cs
dc.date.accessioned2024-02-22T12:46:28Z
dc.date.available2024-02-22T12:46:28Z
dc.date.issued2023-12-01cs
dc.description.abstractWe are concerned in this paper with problems that involve nonlinear potential mappings satisfying condition (S) and whose potentials are coercive. We first provide mild sufficient conditions for the minimizing sequence in the Weierstrass-Tonelli theorem in order to have strongly convergent subsequences. Next, we establish a three critical point theorem which is based on the Pucci-Serrin type mountain pass lemma and which is an infinite dimensional counterpart of the Courant theorem. Ricceri-type three critical point results then follow. Some applications to Dirichlet boundary value problems driven by the perturbed Laplacian are given in the final part of this paper.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Mathematical Analysis and Application. 2023, vol. 528, issue 1, p. 1-13.en
dc.identifier.doi10.1016/j.jmaa.2023.127473cs
dc.identifier.issn0022-247Xcs
dc.identifier.orcid0000-0001-5009-316Xcs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.orcid0000-0002-9559-6630cs
dc.identifier.other185038cs
dc.identifier.researcheridD-3530-2014cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.researcheridAAA-1702-2022cs
dc.identifier.scopus6701633618cs
dc.identifier.scopus35608668800cs
dc.identifier.scopus23973557200cs
dc.identifier.urihttps://hdl.handle.net/11012/245180
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofJournal of Mathematical Analysis and Applicationcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0022247X23004766cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0022-247X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCoercive functionalen
dc.subjectMultiple solutionsen
dc.subjectNonlinear equationsen
dc.titleMultiplicity of solutions for nonlinear coercive problemsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-185038en
sync.item.dbtypeVAVen
sync.item.insts2024.02.22 13:46:28en
sync.item.modts2024.02.22 13:14:14en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometriecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0022247X23004766main.pdf
Size:
363.65 KB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S0022247X23004766main.pdf