Multiplicity of solutions for nonlinear coercive problems
dc.contributor.author | Diblík, Josef | cs |
dc.contributor.author | Galewski, Marek | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.contributor.author | Šmarda, Zdeněk | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 528 | cs |
dc.date.accessioned | 2024-02-22T12:46:28Z | |
dc.date.available | 2024-02-22T12:46:28Z | |
dc.date.issued | 2023-12-01 | cs |
dc.description.abstract | We are concerned in this paper with problems that involve nonlinear potential mappings satisfying condition (S) and whose potentials are coercive. We first provide mild sufficient conditions for the minimizing sequence in the Weierstrass-Tonelli theorem in order to have strongly convergent subsequences. Next, we establish a three critical point theorem which is based on the Pucci-Serrin type mountain pass lemma and which is an infinite dimensional counterpart of the Courant theorem. Ricceri-type three critical point results then follow. Some applications to Dirichlet boundary value problems driven by the perturbed Laplacian are given in the final part of this paper. | en |
dc.format | text | cs |
dc.format.extent | 1-13 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Journal of Mathematical Analysis and Application. 2023, vol. 528, issue 1, p. 1-13. | en |
dc.identifier.doi | 10.1016/j.jmaa.2023.127473 | cs |
dc.identifier.issn | 0022-247X | cs |
dc.identifier.orcid | 0000-0001-5009-316X | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.orcid | 0000-0002-9559-6630 | cs |
dc.identifier.other | 185038 | cs |
dc.identifier.researcherid | D-3530-2014 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.researcherid | AAA-1702-2022 | cs |
dc.identifier.scopus | 6701633618 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.scopus | 23973557200 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/245180 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | Journal of Mathematical Analysis and Application | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0022247X23004766 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0022-247X/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Coercive functional | en |
dc.subject | Multiple solutions | en |
dc.subject | Nonlinear equations | en |
dc.title | Multiplicity of solutions for nonlinear coercive problems | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-185038 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2024.02.22 13:46:28 | en |
sync.item.modts | 2024.02.22 13:14:14 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometrie | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S0022247X23004766main.pdf
- Size:
- 363.65 KB
- Format:
- Adobe Portable Document Format
- Description:
- file 1s2.0S0022247X23004766main.pdf