Multiplicity of solutions for nonlinear coercive problems

Loading...
Thumbnail Image

Authors

Diblík, Josef
Galewski, Marek
Radulescu, Vicentiu
Šmarda, Zdeněk

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

We are concerned in this paper with problems that involve nonlinear potential mappings satisfying condition (S) and whose potentials are coercive. We first provide mild sufficient conditions for the minimizing sequence in the Weierstrass-Tonelli theorem in order to have strongly convergent subsequences. Next, we establish a three critical point theorem which is based on the Pucci-Serrin type mountain pass lemma and which is an infinite dimensional counterpart of the Courant theorem. Ricceri-type three critical point results then follow. Some applications to Dirichlet boundary value problems driven by the perturbed Laplacian are given in the final part of this paper.
We are concerned in this paper with problems that involve nonlinear potential mappings satisfying condition (S) and whose potentials are coercive. We first provide mild sufficient conditions for the minimizing sequence in the Weierstrass-Tonelli theorem in order to have strongly convergent subsequences. Next, we establish a three critical point theorem which is based on the Pucci-Serrin type mountain pass lemma and which is an infinite dimensional counterpart of the Courant theorem. Ricceri-type three critical point results then follow. Some applications to Dirichlet boundary value problems driven by the perturbed Laplacian are given in the final part of this paper.

Description

Citation

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. 2023, vol. 528, issue 1, p. 1-13.
https://www.sciencedirect.com/science/article/pii/S0022247X23004766

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO