Design and Characterisation of an Optical Fibre Dosimeter Based on Silica Optical Fibre and Scintillation Crystal

Loading...
Thumbnail Image

Authors

Jelínek, Michal
Číp, Ondřej
Lazar, Josef
Mikel, Břetislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

ORCID

Altmetrics

Abstract

In nuclear power plants, particle accelerators, and other nuclear facilities, measuring the level of ionising gamma radiation is critical for the safety and management of the operation and the environment’s protection. However, in many cases, it is impossible to monitor ionising radiation directly at the required location continuously. This is typically either due to the lack of space to accommodate the entire dosimeter or in environments with high ionising radiation activity, electromagnetic radiation, and temperature, which significantly shorten electronics’ lifetime. To allow for radiation measurement in such scenarios, we designed a fibre optic dosimeter that introduces an optical fibre link to deliver the scintillation radiation between the ionising radiation sensor and the detectors. The sensors can thus be placed in space-constrained and electronically hostile locations. We used silica optical fibres that withstand high radiation doses, high temperatures, and electromagnetic interference. We use a single photon counter and a photomultiplier to detect the transmitted scintillation radiation. We have shown that selected optical fibres, combined with different scintillation materials, are suitable for measuring gamma radiation levels in hundreds of kBq. We present the architecture of the dosimeter and its experimental characterisation with several combinations of optical fibres, detectors, and scintillation crystals.
In nuclear power plants, particle accelerators, and other nuclear facilities, measuring the level of ionising gamma radiation is critical for the safety and management of the operation and the environment’s protection. However, in many cases, it is impossible to monitor ionising radiation directly at the required location continuously. This is typically either due to the lack of space to accommodate the entire dosimeter or in environments with high ionising radiation activity, electromagnetic radiation, and temperature, which significantly shorten electronics’ lifetime. To allow for radiation measurement in such scenarios, we designed a fibre optic dosimeter that introduces an optical fibre link to deliver the scintillation radiation between the ionising radiation sensor and the detectors. The sensors can thus be placed in space-constrained and electronically hostile locations. We used silica optical fibres that withstand high radiation doses, high temperatures, and electromagnetic interference. We use a single photon counter and a photomultiplier to detect the transmitted scintillation radiation. We have shown that selected optical fibres, combined with different scintillation materials, are suitable for measuring gamma radiation levels in hundreds of kBq. We present the architecture of the dosimeter and its experimental characterisation with several combinations of optical fibres, detectors, and scintillation crystals.

Description

Citation

SENSORS. 2022, vol. 22, issue 19, p. 1-14.
https://www.mdpi.com/1424-8220/22/19/7312

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO