0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter

Loading...
Thumbnail Image

Authors

Khateb, Fabian
Kumngern, Montree
Kulej, Tomasz
Biolek, Dalibor

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

This paper presents an innovative CMOS structure for Differential Difference Transconductance Amplifiers (DDTA). While the circuit operates under extremely low voltage supply 0.5 V, the circuit's performance is improved thanks to using the multiple-input MOS transistor (MI-MOST), the bulk-driven, self-cascode and partial positive feedback (PPF) techniques. As a result, the DDTA structure is less complex, with high gain of 93 dB, wide input voltage range nearly rail-to-rail, and wide transconductance tunability. As an example of application, a second-order voltage-mode universal filter using three DDTAs and two 6 pF integrated capacitors is presented. The filter is designed such that no matching conditions are required for the input and passive components, and the input signals need not be inverted. The natural frequency and the quality factor can be set orthogonally while the natural frequency can be electronically controlled. The circuit was designed and simulated in Cadence environment using 0.18 mu m TSMC technology. The simulation results including intensive Monte-Carlo (MC) and process, temperature, voltage (PVT) analysis confirm the stability and the robustness of the design to process, mismatch variation and PVT corners.
This paper presents an innovative CMOS structure for Differential Difference Transconductance Amplifiers (DDTA). While the circuit operates under extremely low voltage supply 0.5 V, the circuit's performance is improved thanks to using the multiple-input MOS transistor (MI-MOST), the bulk-driven, self-cascode and partial positive feedback (PPF) techniques. As a result, the DDTA structure is less complex, with high gain of 93 dB, wide input voltage range nearly rail-to-rail, and wide transconductance tunability. As an example of application, a second-order voltage-mode universal filter using three DDTAs and two 6 pF integrated capacitors is presented. The filter is designed such that no matching conditions are required for the input and passive components, and the input signals need not be inverted. The natural frequency and the quality factor can be set orthogonally while the natural frequency can be electronically controlled. The circuit was designed and simulated in Cadence environment using 0.18 mu m TSMC technology. The simulation results including intensive Monte-Carlo (MC) and process, temperature, voltage (PVT) analysis confirm the stability and the robustness of the design to process, mismatch variation and PVT corners.

Description

Citation

IEEE Access. 2022, vol. 10, issue 1, p. 43209-43220.
https://ieeexplore.ieee.org/document/9758712

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO