Thermodynamic Analysis of the Landolt-Type Autocatalytic System

Loading...
Thumbnail Image

Authors

Pekař, Miloslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

A recent work demonstrated on the example of the Landolt-type reaction system how the simplest autocatalytic loop is described by the kinetic mass action law and proper parametrization of direct and autocatalytic pathways. Using a methodology of non-equilibrium thermodynamics the thermodynamic consistency of that kinetic model is analyzed and the mass action description generalized including an alternative description by the empirical rate equation. Relationships between independent and dependent reactions and their rates are given. The mathematical modeling shows that following the time evolution of reaction rates provides additional insight into autocatalytic behavior. A brief note on thermodynamic driving forces and coupling with diffusion is added. In summary, this work extends and generalizes the kinetic description of the Landolt-type system placing it within the framework of non-equilibrium thermodynamics and demonstrating its thermodynamic consistency.
A recent work demonstrated on the example of the Landolt-type reaction system how the simplest autocatalytic loop is described by the kinetic mass action law and proper parametrization of direct and autocatalytic pathways. Using a methodology of non-equilibrium thermodynamics the thermodynamic consistency of that kinetic model is analyzed and the mass action description generalized including an alternative description by the empirical rate equation. Relationships between independent and dependent reactions and their rates are given. The mathematical modeling shows that following the time evolution of reaction rates provides additional insight into autocatalytic behavior. A brief note on thermodynamic driving forces and coupling with diffusion is added. In summary, this work extends and generalizes the kinetic description of the Landolt-type system placing it within the framework of non-equilibrium thermodynamics and demonstrating its thermodynamic consistency.

Description

Citation

Catalysts. 2021, vol. 11, issue 11, p. 1-11.
https://www.mdpi.com/2073-4344/11/11/1300

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO