Cell And Sub-Cellular Segmentation In Quantitative Phase Imaging Using U-Net

Loading...
Thumbnail Image

Date

Authors

Majerčík, Jakub
Špaček, Michal

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

The ability to automatically segment images, especially microscopy images of cells, opensnew opportunities in cancer research or other practical applications. Recent advancements in deeplearning enabled for effective single-cell segmentation, however, automatic segmentation of subcellularregions is still challenging. This work describes an implementation of a U-net neural networkfor label-free segmentation of sub-cellular regions on images of adherent prostate cancer cells,specifically PC-3 and 22Rv1. Using the best performing approach, out of all that have been tested,we have managed to distinguish between objects and background with average dice coefficients of0.83, 0.78 and 0.63 for whole cells, nuclei and nucleoli respectively

Description

Citation

Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 9-12. ISBN 978-80-214-5943-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO