Compatibility of Phase Change Materials and Metals:Experimental Evaluation Based on the Corrosion Rate

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
The construction and maintenance of building stock is responsible for approximately 36% of all CO(2)emissions in the European Union. One of the possibilities of how to achieve high energy-efficient and decarbonized building stock is the integration of renewable energy sources (RES) in building energy systems that contain efficient energy storage capacity. Phase Change Materials (PCMs) are latent heat storage media with a high potential of integration in building structures and technical systems. Their solid-liquid transition is specifically utilized for thermal energy storage in building applications. The typically quite old example is the use of ice that serves as long-term storage of cold. Large pieces of ice cut in winter were stored in heavily insulated spaces and prepared for cooling of food or beverages in summer. In the contemporary use of the principle, the PCMs for building applications and tested in this study must have a melting range close to the desired temperature in the occupied rooms. As the PCMs need to be encapsulated, several types of metal containers have been developed and tested for their thermal conductivity and resistance to mechanical damage, which enhances the performance of these so-called latent heat thermal energy storage (LHTES) systems. Long-term compatibility of metals with PCMs depends, i.e., on the elimination of an undesirable interaction between the metal and the specific PCM. Heat storage medium must be reliably sealed in a metal container, especially if the LHTES is integrated into systems where PCM leaks can negatively affect human health (e.g., domestic hot water tanks). The aim of this study is to evaluate the interactions between the selected commercially available organic (Linpar 17 and 1820) and inorganic (Rubitherm SP22 and SP25) PCMs and metals widely used for PCM encapsulation (aluminum, brass, carbon steel, and copper). The evaluation is based on the calculation of the corrosion rate (CR), and the gravimetric method is used for the determination of the weight variations of the metal samples. The results show good compatibility for all metals with organic PCMs, which is demonstrated by a mass loss as low as 2.1 mg in case of carbon steel immersed in Linpar 1820 for 12 weeks. The exposure of metals to organic PCMs also did not cause any visual changes on the surface except for darker stains, and tarnishing occurred on the copper samples. More pronounced changes were observed in metal samples immersed in inorganic PCMs. The highest CR values were calculated for carbon steel exposed to inorganic PCM Rubitherm SP25 (up to 13.897 mg center dot cm(-2)center dot year(-1)). The conclusion of the study is that aluminum is the most suitable container material for the tested PCMs as it shows the lowest mass loss and minimal visual changes on the surface after prolonged exposure to the selected PCMs.
Cílem této studie bylo vyhodnotit interakci mezi vybranými komerčně dostupnými organickými materiály se změnou skupenství (Linpar 17 a 1820) a anorganickými materiály se změnou skupenství (Rubitherm SP22 a SP25) PCM a kovy (hliník, mosaz, uhlíková ocel a měď), které se používají jako obalový materiál. Hodnocení je založeno na výpočtu rychlosti koroze (CR). Gravimetrická metoda byla využita ke stanovení změn hmotnosti kovových vzorků.
MOLECULES. 2020, vol. 25, issue 12, p. 1-15.
Document type
Document version
Published version
Date of access to the full text
Language of document
Study field
Date of acceptance
Result of defence
Document licence
Creative Commons Attribution 4.0 International
Citace PRO