Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: In vitro force relaxation and its clinical relevance
Loading...
Date
Authors
Bezrouk, Aleš
Hosszú, Tomáš
Hromádko, Luděk
Olmrová Zmrhalová, Zuzana
Kopeček, Martin
Smutný, Martin
Krulichová, Iva Selke
Macák, Jan
Kremláček, Jan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
PLOS
ORCID
Altmetrics
Abstract
Biodegradable stents are promising treatments for many diseases, e.g., coronary artery disease, urethral diseases, tracheal diseases, and esophageal strictures. The mechanical properties of biodegradable stent materials play a key role in the safety and efficacy of treatment. In particular, insufficient creep resistance of the stent material could result in premature stent collapse or narrowing. Commercially available biodegradable self-expandable SX-ELLA stents made of polydioxanone monofilament were tested. A new, simple, and affordable method to measure the shear modulus of tiny viscoelastic wires is presented. The important mechanical parameters of the polydioxanone filament were obtained: the median Young's modulus was (E) over tilde = 958 (922, 974) MPa and the shear modulus was (G) over tilde= 357 (185, 387) MPa, resulting in a Poisson's ratio of nu = 0.34. The SX-ELLA stents exhibited significant force relaxation due to the stress relaxation of the polydioxanone monofilament, approximately 19% and 36% 10 min and 48 h after stent application, respectively. However, these results were expected, and the manufacturer and implanting clinician should be aware of the known behavior of these biodegradable materials. If possible, a biodegradable stent should be designed considering therapeutic force rather than initial force. Additionally, new and more advanced biodegradable shape-memory polymers should be considered for future study and use.
Biodegradable stents are promising treatments for many diseases, e.g., coronary artery disease, urethral diseases, tracheal diseases, and esophageal strictures. The mechanical properties of biodegradable stent materials play a key role in the safety and efficacy of treatment. In particular, insufficient creep resistance of the stent material could result in premature stent collapse or narrowing. Commercially available biodegradable self-expandable SX-ELLA stents made of polydioxanone monofilament were tested. A new, simple, and affordable method to measure the shear modulus of tiny viscoelastic wires is presented. The important mechanical parameters of the polydioxanone filament were obtained: the median Young's modulus was (E) over tilde = 958 (922, 974) MPa and the shear modulus was (G) over tilde= 357 (185, 387) MPa, resulting in a Poisson's ratio of nu = 0.34. The SX-ELLA stents exhibited significant force relaxation due to the stress relaxation of the polydioxanone monofilament, approximately 19% and 36% 10 min and 48 h after stent application, respectively. However, these results were expected, and the manufacturer and implanting clinician should be aware of the known behavior of these biodegradable materials. If possible, a biodegradable stent should be designed considering therapeutic force rather than initial force. Additionally, new and more advanced biodegradable shape-memory polymers should be considered for future study and use.
Biodegradable stents are promising treatments for many diseases, e.g., coronary artery disease, urethral diseases, tracheal diseases, and esophageal strictures. The mechanical properties of biodegradable stent materials play a key role in the safety and efficacy of treatment. In particular, insufficient creep resistance of the stent material could result in premature stent collapse or narrowing. Commercially available biodegradable self-expandable SX-ELLA stents made of polydioxanone monofilament were tested. A new, simple, and affordable method to measure the shear modulus of tiny viscoelastic wires is presented. The important mechanical parameters of the polydioxanone filament were obtained: the median Young's modulus was (E) over tilde = 958 (922, 974) MPa and the shear modulus was (G) over tilde= 357 (185, 387) MPa, resulting in a Poisson's ratio of nu = 0.34. The SX-ELLA stents exhibited significant force relaxation due to the stress relaxation of the polydioxanone monofilament, approximately 19% and 36% 10 min and 48 h after stent application, respectively. However, these results were expected, and the manufacturer and implanting clinician should be aware of the known behavior of these biodegradable materials. If possible, a biodegradable stent should be designed considering therapeutic force rather than initial force. Additionally, new and more advanced biodegradable shape-memory polymers should be considered for future study and use.
Description
Keywords
BENIGN ESOPHAGEAL STRICTURES , SUTURE MATERIALS , MEMORY , DEGRADATION , COMPOSITES , STRENGTH , BEHAVIOR , FIBERS , MODELS , CREEP , BENIGN ESOPHAGEAL STRICTURES , SUTURE MATERIALS , MEMORY , DEGRADATION , COMPOSITES , STRENGTH , BEHAVIOR , FIBERS , MODELS , CREEP
Citation
PLoS One. 2020, vol. 15, issue 7, p. 1-16.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235842
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235842
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0001-7091-3022 