Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium diolis DSM 15410

Loading...
Thumbnail Image

Authors

Sedlář, Karel
Vasylkivska, Maryna
Musilová, Jana
Branská, Barbora
Provazník, Valentýna
Patáková, Petra

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Clostridium diolis DSM 15410 is a type strain of solventogenic clostridium capable of conducting isopropanol-butanol-ethanol fermentation. By studying its growth on different carbohydrates, we verified its ability to utilize glycerol and produce 1,3-propanediol and discovered its ability to produced isopropanol. Complete genome sequencing showed that its genome is a single circular chromosome and belongs to the cluster I (sensu scricto) of the genus Clostridium. By cultivation analysis we highlighted its specific behavior in comparison to two selected closely related strains. Despite the fact that several CRISPR loci were found, 16 putative prophages showed the ability to receive foreign DNA. Thus, the strain has the necessary features for future engineering of its 1,3-propanediol biosynthetic pathway and for the possible industrial utilization in the production of biofuels.
Clostridium diolis DSM 15410 is a type strain of solventogenic clostridium capable of conducting isopropanol-butanol-ethanol fermentation. By studying its growth on different carbohydrates, we verified its ability to utilize glycerol and produce 1,3-propanediol and discovered its ability to produced isopropanol. Complete genome sequencing showed that its genome is a single circular chromosome and belongs to the cluster I (sensu scricto) of the genus Clostridium. By cultivation analysis we highlighted its specific behavior in comparison to two selected closely related strains. Despite the fact that several CRISPR loci were found, 16 putative prophages showed the ability to receive foreign DNA. Thus, the strain has the necessary features for future engineering of its 1,3-propanediol biosynthetic pathway and for the possible industrial utilization in the production of biofuels.

Description

Citation

GENOMICS. 2020, vol. 113, issue 1, p. 1109-1119.
https://www.sciencedirect.com/science/article/pii/S088875432032005X

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO