Characteristic Properties of Alternative Biomass Fuels

Loading...
Thumbnail Image

Authors

Lisý, Martin
Lisá, Hana
Jecha, David
Baláš, Marek
Križan, Peter

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Biomass is one of the most promising renewable energy sources because it enables energy accumulation and controlled production. With this, however, the demand for biofuels grows and thus there is an effort to expand their portfolio. Nevertheless, to use a broader range of biofuels, it is necessary to know their fuel properties, such as coarse and elemental analysis, or lower heating value. This paper presents the results of testing the fuel properties of several new, potentially usable biofuels, such as quinoa, camelina, crambe, and safflower, which are compared with some traditional biofuels (wood, straw, sorrel, hay). Moreover, the results of the determination of water content, ash, and volatile combustible content of these fuels are included, along with the results of the elemental analysis and the determination of higher and lower heating values. Based on these properties, it is possible to implement designs of combustion plants of different outputs for these fuels.
Biomass is one of the most promising renewable energy sources because it enables energy accumulation and controlled production. With this, however, the demand for biofuels grows and thus there is an effort to expand their portfolio. Nevertheless, to use a broader range of biofuels, it is necessary to know their fuel properties, such as coarse and elemental analysis, or lower heating value. This paper presents the results of testing the fuel properties of several new, potentially usable biofuels, such as quinoa, camelina, crambe, and safflower, which are compared with some traditional biofuels (wood, straw, sorrel, hay). Moreover, the results of the determination of water content, ash, and volatile combustible content of these fuels are included, along with the results of the elemental analysis and the determination of higher and lower heating values. Based on these properties, it is possible to implement designs of combustion plants of different outputs for these fuels.

Description

Citation

Energies. 2020, vol. 13, issue 6, p. 1-17.
https://www.mdpi.com/1996-1073/13/6/1448/htm

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO