The growth of metastable fcc Fe78Ni22 thin films on H-Si(100) substrates suitable for focused ion beam direct magnetic patterning

Loading...
Thumbnail Image

Authors

Gloss, Jonáš
Horký, Michal
Křižáková, Viola
Flajšman, Lukáš
Schmid, Michael
Urbánek, Michal
Varga, Peter

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

We have studied the growth of metastable face-centered-cubic, non-magnetic Fe78Ni22 thin films on silicon substrates. These films undergo a magnetic (paramagnetic to ferromagnetic) and structural (fcc to bcc) phase transformation upon ion beam irradiation and thus can serve as a material for direct writing of magnetic nanostructures by the focused ion beam. So far, these films were prepared only on single-crystal Cu(1 0 0) substrates. We show that transformable Fe78Ni22 thin films can also be prepared on a hydrogen-terminated Si(1 0 0) with a 130-nm-thick Cu(1 0 0) buffer layer. The H-Si(1 0 0) substrates can be prepared by hydrofluoric acid etching or by annealing at 1200 degrees C followed by adsorption of atomic hydrogen. The Cu(1 0 0) buffer layer and Fe78Ni22 fcc metastable thin film were deposited by thermal evaporation in ultra-high vacuum. The films were consequently transformed in-situ by 4 keV Ar+ ion irradiation and ex-situ by a 30 keV Ga+ focused ion beam, and their magnetic properties were studied by magneto-optical Kerr effect magnetometry. The substitution of expensive copper single crystal substrate by standard silicon wafers dramatically expands application possibilities of metastable paramagnetic thin films for focused-ion-beam direct magnetic patterning.
We have studied the growth of metastable face-centered-cubic, non-magnetic Fe78Ni22 thin films on silicon substrates. These films undergo a magnetic (paramagnetic to ferromagnetic) and structural (fcc to bcc) phase transformation upon ion beam irradiation and thus can serve as a material for direct writing of magnetic nanostructures by the focused ion beam. So far, these films were prepared only on single-crystal Cu(1 0 0) substrates. We show that transformable Fe78Ni22 thin films can also be prepared on a hydrogen-terminated Si(1 0 0) with a 130-nm-thick Cu(1 0 0) buffer layer. The H-Si(1 0 0) substrates can be prepared by hydrofluoric acid etching or by annealing at 1200 degrees C followed by adsorption of atomic hydrogen. The Cu(1 0 0) buffer layer and Fe78Ni22 fcc metastable thin film were deposited by thermal evaporation in ultra-high vacuum. The films were consequently transformed in-situ by 4 keV Ar+ ion irradiation and ex-situ by a 30 keV Ga+ focused ion beam, and their magnetic properties were studied by magneto-optical Kerr effect magnetometry. The substitution of expensive copper single crystal substrate by standard silicon wafers dramatically expands application possibilities of metastable paramagnetic thin films for focused-ion-beam direct magnetic patterning.

Description

Citation

APPLIED SURFACE SCIENCE. 2019, vol. 469, issue 1, p. 747-752.
https://www.sciencedirect.com/science/article/pii/S0169433218330459?via%3Dihub

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO