Vol. 28, No. 1
Browse
Recent Submissions
Now showing 1 - 5 of 7
- ItemIntelligent Sampling of Anterior Human Nasal Swabs using a Collaborative Robotic Arm(Institute of Automation and Computer Science, Brno University of Technology, 2022-06-30) Parak, Roman; Juricek, MartinAdvanced robotics does not always have to be associated with Industry 4.0, but can also be applied, for example, in the Smart Hospital concept. Developments in this field have been driven by the coronavirus disease (COVID-19), and any improvement in the work of medical staff is welcome. In this paper, an experimental robotic platform was designed and implemented whose main function is the swabbing samples from the nasal vestibule. The robotic platform represents a complete integration of software and hardware, where the operator has access to a web-based application and can control a number of functions. The increased safety and collaborative approach cannot be overlooked. The result of this work is a functional prototype of the robotic platform that can be further extended, for example, by using alternative technologies, extending patient safety, or clinical tests and studies. Code is available at https://github.com/Steigner/Robo_Medicinae_I
- ItemGrouped Pointwise Convolutions Reduce Parameters in Convolutional Neural Networks(Institute of Automation and Computer Science, Brno University of Technology, 2022-06-30) Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, DomenecIn DCNNs, the number of parameters in pointwise convolutions rapidly grows due to the multiplication of the number of filters by the number of input channels that come from the previous layer. Our proposal makes pointwise convolutions parameter efficient via grouping filters into parallel branches or groups, where each branch processes a fraction of the input channels. However, by doing so, the learning capability of the DCNN is degraded. To avoid this effect, we suggest interleaving the output of filters from different branches at intermediate layers of consecutive pointwise convolutions. We applied our improvement to the EfficientNet, DenseNet-BC L100, MobileNet and MobileNet V3 Large architectures. We trained these architectures with the CIFAR-10, CIFAR-100, Cropped-PlantDoc and The Oxford-IIIT Pet datasets. When training from scratch, we obtained similar test accuracies to the original EfficientNet and MobileNet V3 Large architectures while saving up to 90% of the parameters and 63% of the flops.
- ItemImproving Initial Aerofoil Geometry Using Aerofoil Particle Swarm Optimisation(Institute of Automation and Computer Science, Brno University of Technology, 2022-06-30) Muller, JanAdvanced optimisation of the aerofoil wing of a general aircraft is the main subject of this paper. Meta-heuristic optimisation techniques, especially swarm algorithms, were used. Subsequently, a new variant denoted as aerofoil particle swarm optimisation (aPSO) was developed from the original particle swarm optimisation (PSO). A parametric model based on B-spline was used to optimise the initial aerofoil. The simulation software Xfoil was calculating basic aerodynamic features (lift, drag, moment).
- ItemIdentifying Optimal Baseline Variant of Unsupervised Term Weighting in Question Classification Based on Bloom Taxonomy(Institute of Automation and Computer Science, Brno University of Technology, 2022-06-30) Sangodiah, Anbuselvan; Jee San, Tham; Tien Fui, Yong; Ean Heng, Lim; Ayyasamy, Ramesh Kumar; A Jalil, NoraziraExamination is one of the common ways to evaluate the students’ cognitive levels in higher education institutions. Exam questions are labeled manually by educators in accordance with Bloom’s taxonomy cognitive domain. To ease the burden of the educators, several past research works have proposed the automated question classification based on Bloom’s taxonomy using the machine learning technique. Feature selection, feature extraction and term weighting are common ways to improve the accuracy of question classification. Commonly used term weighting method in the past work is unsupervised namely TF and TF-IDF. There are several variants of TF and TFIDF and the most optimal variant has yet to be identified in the context of question classification based on BT. Therefore, this paper aims to study the TF, TF-IDF and normalized TF-IDF variants and identify the optimal variant that can enhance the exam question classification accuracy. To investigate the variants two different classifiers were used, which are Support Vector Machine (SVM) and Naïve Bayes. The average accuracies achieved by TF-IDF and normalized TF-IDF variants using SVM classifier were 64.3% and 72.4% respectively, while using Naïve Bayes classifier the average accuracies for TF-IDF and normalized TF-IDF were 61.9% and 63.0% respectively. Generally, the normalized TF-IDF variants outperformed TF and TF-IDF variants in accuracy and F1-measure respectively. Further statistical analysis using t-test and Wilcoxon Signed also shows that the differences in accuracy between normalized TF-IDF and TF, TF-IDF are significant. The findings from this study show that the Normalized TF-IDF3 variant recorded the highest accuracy of 74.0% among normalized TF-IDF variants. Also, the differences in accuracy between Normalized TF-IDF3 and other normalized variants are generally significant, thus the optimal variant is Normalized TF-IDF3. Therefore, the normalized TF-IDF3 variant is important for benchmarking purposes, which can be used to compare with other term weighting techniques in future work.
- ItemMeta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking Capability Under Joint Limits(Institute of Automation and Computer Science, Brno University of Technology, 2022-06-30) Kanagaraj, Ganesan; Sheik Masthan, SAR; Yu, Vincent FIn robot-assisted manufacturing or assembly, following a predefined path became a critical aspect. In general, inverse kinematics offers the solution to control the movement of manipulator while following the trajectory. The main problem with the inverse kinematics approach is that inverse kinematics are computationally complex. For a redundant manipulator, this complexity is further increased. Instead of employing inverse kinematics, the complexity can be reduced by using a heuristic algorithm. Therefore, a heuristic-based approach can be used to solve the inverse kinematics of the robot manipulator end effector, guaranteeing that the desired paths are accurately followed. This paper compares the performance of four such heuristic-based approaches to solving the inverse kinematics problem. They are Bat Algorithm (BAT), Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA). The performance of these algorithms is evaluated based on their ability to accurately follow a predefined trajectory. Extensive simulations show that BAT and GSA outperform PSO and WOA in all aspects considered in this work related to inverse kinematic problems.