2017
Browse
Recent Submissions
Now showing 1 - 5 of 14
- ItemOdhad pózy kamery z přímek pomocí přímé lineární transformace(Vysoké učení technické v Brně. Fakulta informačních technologií, ) Přibyl, Bronislav; Zemčík, Pavel; Pajdla, Tomáš; Koch, ReinhardTato disertační práce se zabývá odhadem pózy kamery z korespondencí 3D a 2D přímek, tedy tzv. perspektivním problémem n přímek (angl. Perspective- n -Line, PnL). Pozornost je soustředěna na případy s velkým počtem čar, které mohou být efektivně řešeny metodami využívajícími lineární formulaci PnL. Dosud byly známy pouze metody pracující s korespondencemi 3D bodů a 2D přímek. Na základě tohoto pozorování byly navrženy dvě nové metody založené na algoritmu přímé lineární transformace (angl. Direct Linear Transformation, DLT): Metoda DLT-Plücker-Lines pracující s korespondencemi 3D a 2D přímek a metoda DLT-Combined-Lines pracující jak s korespondencemi 3D bodů a 2D přímek, tak s korespondencemi 3D přímek a 2D přímek. Ve druhém případě je redundantní 3D informace využita k redukci minimálního počtu požadovaných korespondencí přímek na 5 a ke zlepšení přesnosti metody. Navržené metody byly důkladně testovány za různých podmínek včetně simulovaných a reálných dat a porovnány s nejlepšími existujícími PnL metodami. Metoda DLT-Combined-Lines dosahuje výsledků lepších nebo srovnatelných s nejlepšími existujícími metodami a zároveň je značně rychlá. Tato disertační práce také zavádí jednotný rámec pro popis metod pro odhad pózy kamery založených na algoritmu DLT. Obě navržené metody jsou definovány v tomto rámci.
- ItemModerní metody modelování a simulace elektronických obvodů(Vysoké učení technické v Brně. Fakulta informačních technologií, ) Kocina, Filip; Kunovský, Jiří; Kozek, Martin; Kyncl, JanDisertační práce se zabývá simulací elektronických obvodů. Popisuje metodu kapacitorové substituce (CSM) pro převod elektronických obvodů na elektrické obvody, jež mohou být následně řešeny pomocí numerických metod, zejména Moderní metodou Taylorovy řady (MTSM). Tato metoda se odlišuje automatickým výběrem řádu, půlením kroku v případě potřeby a rozsáhlou oblastí stability podle zvoleného řádu. V rámci disertační práce bylo autorem disertace vytvořeno specializované programové vybavení pro řešení obyčejných diferenciálních rovnic pomocí MTSM, s mnoha vylepšeními v algoritmech (v porovnání s TKSL/386). Tyto algoritmy zahrnují zjednodušování obecných výrazů na polynomy, paralelizaci nezávislou na integrační metodě atp. Tento software běží na linuxovém serveru, který komunikuje pomocí protokolu TCP/IP. Toto vybavení bylo úspěšně použito pro simulaci VLSI obvodů, jejichž řešení pomocí CSM bylo značně rychlejší a spotřebovávalo méně paměti než state-of-the-art SPICE.
- ItemKoevoluce prediktorů fitness v kartézském genetickém programování(Vysoké učení technické v Brně. Fakulta informačních technologií, ) Drahošová, Michaela; Sekanina, Lukáš; Pošík, Petr; Šenkeřík, RomanKartézské genetické programován (CGP) je evoluc inspirovaná metoda strojového učen, která je primárně určená pro automatizovaný návrh programů a čslicových obvodů. CGP je úspěšné v řešen mnoha úloh z reálného světa. Avšak k nalezen inovativnch řešen obvykle potřebuje značný výpočetn výkon. Každý kandidátn program navržený pomoc CGP mus být spuštěn, aby se zjistilo, do jaké mry tento program řeš zadaný problém, a mohla mu být přiřazena fitness hodnota. Právě vyhodnocen fitness bývá výpočetně nejnáročnějš část návrhu pomoc CGP. Tato práce se zabývá využitm koevoluce prediktorů fitness v CGP za účelem zrychlen procesu evolučnho návrhu prováděného pomoc CGP. Prediktor fitness je malá podmnožina trénovacch dat použvaná pro rychlý odhad fitness hodnoty namsto náročného vyhodnocen objektivn fitness hodnoty. Koevoluce prediktorů fitness je optimalizačn metoda modelován fitness, která snižuje náročnost a frekvenci výpočtu fitness. V této práci je koevolučn algoritmus přizpůsoben pro CGP a jsou představeny a zkoumány tři přstupy k zakódován prediktorů fitness. Představená metoda je experimentálně vyhodnocena v pěti úlohách symbolické regrese a v úloze návrhu obrazových filtrů. Výsledky experimentů ukazuj, že pomoc této metody lze významně snžit výpočetn čas, který CGP potřebuje pro řešen zkoumané třdy úloh.
- Item"Semi-supervised" trénování hlubokých neuronových sítí pro rozpoznávání řeči(Vysoké učení technické v Brně. Fakulta informačních technologií, ) Veselý, Karel; Burget, Lukáš; Ircing, Pavel; Lamel, LoriV této dizertační práci nejprve prezentujeme teorii trénování neuronových sítí pro rozpoznávání řeči společně s implementací trénovacího receptu 'nnet1', který je součástí toolkitu s otevřeným kódem Kaldi. Recept se skládá z předtrénování bez učitele pomocí algoritmu RBM, trénování klasifikátoru z řečových rámců s kriteriální funkcí Cross-entropy a ze sekvenčního trénování po větách s kriteriální funkcí sMBR. Následuje hlavní téma práce, kterým je semi-supervised trénování se smíšenými daty s přepisem i bez přepisu. Inspirováni konferenčními články a úvodními experimenty jsme se zaměřili na několik otázek: Nejprve na to, zda je lepší konfidence (t.j. důvěryhodnosti automaticky získaných anotací) počítat po větách, po slovech nebo po řečových rámcích. Dále na to, zda by konfidence měly být použity pro výběr dat nebo váhování dat - oba přístupy jsou kompatibilní s trénováním pomocí metody stochastického nejstrmějšího sestupu, kde jsou gradienty řečových rámců násobeny vahou. Dále jsme se zabývali vylepšováním semi-supervised trénování pomocí kalibrace kofidencí a přístupy, jak model dále vylepšit pomocí dat se správným přepisem. Nakonec jsme navrhli jednoduchý recept, pro který není nutné časově náročné ladění hyper-parametrů trénování, a který je prakticky využitelný pro různé datové sady. Experimenty probíhaly na několika sadách řečových dat: pro rozpoznávač vietnamštiny s 10 přepsaným hodinami (Babel) se chybovost snížila o 2.5%, pro angličtinu se 14 přepsanými hodinami (Switchboard) se chybovost snížila o 3.2%. Zjistili jsme, že je poměrně těžké dále vylepšit přesnost systému pomocí úprav konfidencí, zároveň jsme ale přesvědčení, že naše závěry mají značnou praktickou hodnotu: data bez přepisu je jednoduché nasbírat a naše navrhované řešení přináší dobrá zlepšení úspěšnosti a není těžké je replikovat.
- ItemAutomatická analýza dopravy z videa: Rozpoznání typů vozidel a automatické měření rychlosti(Vysoké učení technické v Brně. Fakulta informačních technologií, ) Sochor, Jakub; Herout, Adam; Elder, James; Svoboda,, TomášV rámci této dizertační práce se zaměřuji na Inteligentní dopravní systémy a Počítačové vidění - především automatické měření rychlosti a rozpoznání automobilů podle typů. Rozpoznání automobilů podle typů je úkol, ve kterém system má predikovat přesný typ (např. Škoda Octavia combi mk2) pro daný obrázek automobilu. Publikoval jsem dva články, které popisují navržený přístup k tomuto problému a tvoří jádro této dizertace. Prezentovaná metoda je založena na 3D obalových kvádrech postavených okolo automobilů, které jsou následně využity pro rozbalení obrázku automobilu do roviny a tudíž normalizaci vstupu neuronové sítě, která dělá následné rozpoznání. Přístup byl dále rozpracován v druhé publikaci, kde je navržena metoda pro určení tohoto 3D obalového kvádru z jediného obrázku - tudíž není nutné mít zkalibrovanou kameru. Experimentální výsledky ukazují, že navržená metoda zlepšuje úspěšnost rozpoznání o 12 procentních bodů - chyba rozpoznání je redukována o 50 procent.Při měření rychlosti má systém za úkol odhadnout rychlost projíždějících aut z videa. Cílem je také, ať měření probíhá plně automaticky bez jakékoli manuální kalibrace. Jelikož neexistoval žádný dataset, který by obsahoval velké množství průjezdů s přesně změřenou rychlostí, tak jsme nejprve takovýto dataset pořídili. Dále jsem navrhnul metodu pro plně automatickou kalibraci dopravní dohledové kamery což umožňuje měřit rychlost automobilů pozorovaných touto kamerou. Metoda je založena na odhadu kalibrace pomocí detekovaných úběžníků scény a následného zarovnání 3D modelů několika běžných typů automobilů. Experimentální výsledky ukazují, že navržená metoda dosahuje průměrné chyby měření rychlosti 1,10 km/h.
- «
- 1 (current)
- 2
- 3
- »