Experimental Determination of Continuous Cooling Transformation Diagram for High Strength Steel X155CrMoV12
Loading...
Date
Authors
Krbaťa, Michal
Majerík, Jozef
Barényi, Igor
Eckert, Maroš
Čep, Robert
Sedlák, Josef
Samardžić, Ivan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Hrvatsko Metalursko Društvo
ORCID
Abstract
The article is a result of investigations which deals with the phase transformations of tool steel X155CrMoV12. The experimental data obtained was used to evaluate the resulting Continuous Cooling Transform (CCT) diagram, which consists of seven dilation curves. All experimental samples from dilatometric analyzes were then subjected to microstructural analyzes and hardness measurements to characterize the microstructure and hardness for each heat treatment mode tested. Atomic Force Microscopy (AFM) microscopy was also used to study the carbides present in steels and their size and shape for all selected cooling modes.
The article is a result of investigations which deals with the phase transformations of tool steel X155CrMoV12. The experimental data obtained was used to evaluate the resulting Continuous Cooling Transform (CCT) diagram, which consists of seven dilation curves. All experimental samples from dilatometric analyzes were then subjected to microstructural analyzes and hardness measurements to characterize the microstructure and hardness for each heat treatment mode tested. Atomic Force Microscopy (AFM) microscopy was also used to study the carbides present in steels and their size and shape for all selected cooling modes.
The article is a result of investigations which deals with the phase transformations of tool steel X155CrMoV12. The experimental data obtained was used to evaluate the resulting Continuous Cooling Transform (CCT) diagram, which consists of seven dilation curves. All experimental samples from dilatometric analyzes were then subjected to microstructural analyzes and hardness measurements to characterize the microstructure and hardness for each heat treatment mode tested. Atomic Force Microscopy (AFM) microscopy was also used to study the carbides present in steels and their size and shape for all selected cooling modes.
Description
Keywords
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
DOI
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-9819-8259 