Laser patterning of the room temperature van der Waals ferromagnet 1T-CrTe<sub>2</sub>
Loading...
Date
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
Lamellar crystalline materials, whose layers are bound by van der Waals forces, can be stacked to form ultrathin artificial heterostructures and, in particular, vertical magnetic junctions when some of the stacked materials are (ferro)magnetic. Here, using the room temperature van der Waals ferromagnet 1T-CrTe2, we report a method for patterning lateral magnetic junctions. Exploiting the heat-induced phase transformation of the material into CrxTey compounds (x/y>1/2), we use local laser heating to imprint patterns at the micron-scale. Optimizing laser heat dissipation, we further demonstrate the crucial role of the substrate to control the phase transformation. If plain, unstructured poorly heat-conducting substrates allow for direct writing of magnetic patterns, structured h-BN layers can serve as heat stencils to draw potentially thinner patterns. Besides, h-BN encapsulation turns out to be heat-protective (in addition to protecting against oxidation, for which it is generally used), allowing the demonstration of room temperature ferromagnetism in <7 nm-thick 1T-CrTe2.
Lamellar crystalline materials, whose layers are bound by van der Waals forces, can be stacked to form ultrathin artificial heterostructures and, in particular, vertical magnetic junctions when some of the stacked materials are (ferro)magnetic. Here, using the room temperature van der Waals ferromagnet 1T-CrTe2, we report a method for patterning lateral magnetic junctions. Exploiting the heat-induced phase transformation of the material into CrxTey compounds (x/y>1/2), we use local laser heating to imprint patterns at the micron-scale. Optimizing laser heat dissipation, we further demonstrate the crucial role of the substrate to control the phase transformation. If plain, unstructured poorly heat-conducting substrates allow for direct writing of magnetic patterns, structured h-BN layers can serve as heat stencils to draw potentially thinner patterns. Besides, h-BN encapsulation turns out to be heat-protective (in addition to protecting against oxidation, for which it is generally used), allowing the demonstration of room temperature ferromagnetism in <7 nm-thick 1T-CrTe2.
Lamellar crystalline materials, whose layers are bound by van der Waals forces, can be stacked to form ultrathin artificial heterostructures and, in particular, vertical magnetic junctions when some of the stacked materials are (ferro)magnetic. Here, using the room temperature van der Waals ferromagnet 1T-CrTe2, we report a method for patterning lateral magnetic junctions. Exploiting the heat-induced phase transformation of the material into CrxTey compounds (x/y>1/2), we use local laser heating to imprint patterns at the micron-scale. Optimizing laser heat dissipation, we further demonstrate the crucial role of the substrate to control the phase transformation. If plain, unstructured poorly heat-conducting substrates allow for direct writing of magnetic patterns, structured h-BN layers can serve as heat stencils to draw potentially thinner patterns. Besides, h-BN encapsulation turns out to be heat-protective (in addition to protecting against oxidation, for which it is generally used), allowing the demonstration of room temperature ferromagnetism in <7 nm-thick 1T-CrTe2.
Description
Keywords
Citation
Physical Review Materials. 2025, vol. 2, issue 9, 9 p.
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.9.024001
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.9.024001
Document type
Document version
submittedVersion
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

0000-0002-1463-9265 