Choosing the right electrode representation for modeling real bioelectronic interfaces: a comprehensive guide

dc.contributor.authorOpančar, Aleksandarcs
dc.contributor.authorGlowacki, Eric Danielcs
dc.contributor.authorDerek, Vedrancs
dc.coverage.issue4cs
dc.coverage.volume21cs
dc.date.accessioned2025-03-26T08:10:17Z
dc.date.available2025-03-26T08:10:17Z
dc.date.issued2024-08-01cs
dc.description.abstractObjective. Producing realistic numerical models of neurostimulation electrodes in contact with the electrolyte and tissue, for use in time-domain finite element method simulations while maintaining a reasonable computational burden remains a challenge. We aim to provide a straightforward experimental-theoretical hybrid approach for common electrode materials (Ti, TiN, ITO, Au, Pt, IrOx) that are relevant to the research field of bioelectronics, along with all the information necessary to replicate our approach in arbitrary geometry for real-life experimental applications. Approach. We used electrochemical impedance spectroscopy (EIS) to extract the electrode parameters in the AC regime under different DC biases. The pulsed electrode response was obtained by fast amperometry (FA) to optimize and verify the previously obtained electrode parameters in a COMSOL Multiphysics model. For optimization of the electrode parameters a constant phase element (CPE) needed to be implemented in time-domain. Main results. We find that the parameters obtained by EIS can be used to accurately simulate pulsed response only close to the electrode open circuit potential, while at other potentials we give corrections to the obtained parameters, based on FA measurements. We also find that for many electrodes (Au, TiN, Pt, and IrOx), it is important to implement a distributed CPE rather than an ideal capacitor for estimating the electrode double-layer capacitance. We outline and provide examples for the novel time-domain implementation of the CPE for finite element method simulations in COMSOL Multiphysics. Significance. An overview of electrode parameters for some common electrode materials can be a valuable and useful tool in numerical bioelectronics models. A provided FEM implementation model can be readily adapted to arbitrary electrode geometries and used for various applications. Finally, the presented methodology for parametrization of electrode materials can be used for any materials of interest which were not covered by this work.en
dc.formattextcs
dc.format.extent1-17cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJ NEURAL ENG. 2024, vol. 21, issue 4, p. 1-17.en
dc.identifier.doi10.1088/1741-2552/ad6a8bcs
dc.identifier.issn1741-2560cs
dc.identifier.orcid0000-0003-3471-1110cs
dc.identifier.orcid0000-0002-0280-8017cs
dc.identifier.other189841cs
dc.identifier.urihttps://hdl.handle.net/11012/250184
dc.language.isoencs
dc.publisherIOP Publishingcs
dc.relation.ispartofJ NEURAL ENGcs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1741-2552/ad6a8bcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1741-2560/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbioelectronicsen
dc.subjectelectrodesen
dc.subjectinterfaceen
dc.subjectconstant phase elementen
dc.subjectsimulationen
dc.titleChoosing the right electrode representation for modeling real bioelectronic interfaces: a comprehensive guideen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189841en
sync.item.dbtypeVAVen
sync.item.insts2025.03.26 09:10:17en
sync.item.modts2025.03.26 07:32:24en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Opancar_2024_J._Neural_Eng._21_046049.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
Description:
file Opancar_2024_J._Neural_Eng._21_046049.pdf