Engineering Conductive Hydrogels with Tissue-like Properties: A 3D Bioprinting and Enzymatic Polymerization Approach

dc.contributor.authorLi, Changbaics
dc.contributor.authorNaeimipour, Sajjadcs
dc.contributor.authorRasti Boroojeni, Fatemehcs
dc.contributor.authorAbrahamsson, Tobiascs
dc.contributor.authorStrakosas, Xenofoncs
dc.contributor.authorYi, Yangpeiqics
dc.contributor.authorRilemark, Rebeckacs
dc.contributor.authorLindholm, Carolinecs
dc.contributor.authorPerla, Venkata K.cs
dc.contributor.authorMusumeci, Chiaracs
dc.contributor.authorLi, Yuyangcs
dc.contributor.authorBiesmans, Hannecs
dc.contributor.authorSavvakis, Marioscs
dc.contributor.authorOlsson, Evacs
dc.contributor.authorTybrandt, Klascs
dc.contributor.authorDonahue, Marycs
dc.contributor.authorGerasimov, Jennifer Y.cs
dc.contributor.authorSelegrd, Robertcs
dc.contributor.authorBerggren, Magnuscs
dc.contributor.authorAili, Danielcs
dc.contributor.authorSimon, Daniel T.cs
dc.coverage.issue11cs
dc.coverage.volume4cs
dc.date.accessioned2025-04-08T05:56:07Z
dc.date.available2025-04-08T05:56:07Z
dc.date.issued2024-11-01cs
dc.description.abstractHydrogels are promising materials for medical devices interfacing with neural tissues due to their similar mechanical properties. Traditional hydrogel-based bio-interfaces lack sufficient electrical conductivity, relying on low ionic conductivity, which limits signal transduction distance. Conducting polymer hydrogels offer enhanced ionic and electronic conductivities and biocompatibility but often face challenges in processability and require aggressive polymerization methods. Herein, we demonstrate in situ enzymatic polymerization of pi-conjugated monomers in a hyaluronan (HA)-based hydrogel bioink to create cell-compatible, electrically conductive hydrogel structures. These structures were fabricated using 3D bioprinting of HA-based bioinks loaded with conjugated monomers, followed by enzymatic polymerization via horseradish peroxidase. This process increased the hydrogels' stiffness from about 0.6 to 1.5 kPa and modified their electroactivity. The components and polymerization process were well-tolerated by human primary dermal fibroblasts and PC12 cells. This work presents a novel method to fabricate cytocompatible and conductive hydrogels suitable for bioprinting. These hybrid materials combine tissue-like mechanical properties with mixed ionic and electronic conductivity, providing new ways to use electricity to influence cell behavior in a native-like microenvironment. This study introduces a novel method to enhance hydrogel conductivity and biocompatibility for biomedical applications. By using in situ enzymatic polymerization of pi-conjugated monomers within a hyaluronan-based hydrogel bioink, followed by 3D bioprinting, the resulting hydrogels exhibit improved stiffness, electroactivity, and cytocompatibility. These conductive hydrogels provide a versatile platform for advanced 3D cell culture and neural engineering.image (c) 2024 WILEY-VCH GmbHen
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSMALL SCIENCE. 2024, vol. 4, issue 11, p. 1-12.en
dc.identifier.doi10.1002/smsc.202400290cs
dc.identifier.issn2688-4046cs
dc.identifier.other189712cs
dc.identifier.urihttps://hdl.handle.net/11012/250835
dc.language.isoencs
dc.publisherWILEYcs
dc.relation.ispartofSMALL SCIENCEcs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/smsc.202400290cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2688-4046/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subject3D printingen
dc.subjectcell scaffolden
dc.subjectconducting polymeren
dc.subjectin vitroen
dc.subjectpolymerizationen
dc.titleEngineering Conductive Hydrogels with Tissue-like Properties: A 3D Bioprinting and Enzymatic Polymerization Approachen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GA/GA24-10775Scs
sync.item.dbidVAV-189712en
sync.item.dbtypeVAVen
sync.item.insts2025.04.08 07:56:07en
sync.item.modts2025.04.08 07:33:51en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SmallScience2024Li.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description:
file SmallScience2024Li.pdf