Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions
dc.contributor.author | Zheng, Maoding | cs |
dc.contributor.author | Zhang, Binlin | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 88 | cs |
dc.date.issued | 2023-06-13 | cs |
dc.description.abstract | In this paper, we construct the solutions to the nonlinear Schrodinger system. We construct the solution for attractive and repulsive cases. When $x_0$ is a local maximum point of the potentials P and Q and $P(x_0) = Q(x_0)$, we construct k spikes concentrating near the local maximum point $x_0$. When x_0$ is a local maximum point of P and $x^{\ bar}_ 0$ is a local maximum point of Q, we construct k spikes of $ u $ concentrating at the local maximum point $ x_0$ and m spikes of v concentrating at the local maximum point $x^{\ bar}_ 0$ when $x_0 \ not = $x^{\ bar}_ 0$ This paper extends the main results established by Peng and Wang (Arch Ration Mech Anal 208:305-339, 2013) and Peng and Pi (Discrete Contin Dyn Syst 36:2205-2227, 2016), where the authors considered the case N = 3, p = 3. | en |
dc.format | text | cs |
dc.format.extent | 1-56 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | APPLIED MATHEMATICS AND OPTIMIZATION. 2023, vol. 88, issue 1, p. 1-56. | en |
dc.identifier.doi | 10.1007/s00245-023-09974-4 | cs |
dc.identifier.issn | 0095-4616 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 183934 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/213634 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | APPLIED MATHEMATICS AND OPTIMIZATION | cs |
dc.relation.uri | https://link.springer.com/article/10.1007/s00245-023-09974-4 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0095-4616/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Nonlinear Schrodinger system | en |
dc.subject | Lyapunov-Schmidt reduction | en |
dc.subject | Singularity | en |
dc.subject | Perturbation | en |
dc.title | Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-183934 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:40:50 | en |
sync.item.modts | 2025.01.17 16:40:31 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s00245023099744.pdf
- Size:
- 599.44 KB
- Format:
- Adobe Portable Document Format
- Description:
- s00245023099744.pdf