Rapid oxygen exchange between hematite and water vapor

dc.contributor.authorJakub, Zdeněkcs
dc.contributor.authorMeier, Matthiascs
dc.contributor.authorKraushofer, Floriancs
dc.contributor.authorBalajka, Jancs
dc.contributor.authorPavelec, Jiřícs
dc.contributor.authorSchmid, Michaelcs
dc.contributor.authorFranchini, Cesarecs
dc.contributor.authorDiebold, Ulrikecs
dc.contributor.authorParkinson, Gareth S.cs
dc.coverage.issue1cs
dc.coverage.volume12cs
dc.date.accessioned2021-12-07T15:54:09Z
dc.date.available2021-12-07T15:54:09Z
dc.date.issued2021-11-10cs
dc.description.abstractOxygen exchange at oxide/liquid and oxide/gas interfaces is important in technology and environmental studies, as it is closely linked to both catalytic activity and material degradation. The atomic-scale details are mostly unknown, however, and are often ascribed to poorly defined defects in the crystal lattice. Here we show that even thermodynamically stable, well-ordered surfaces can be surprisingly reactive. Specifically, we show that all the 3-fold coordinated lattice oxygen atoms on a defect-free single-crystalline "r-cut" (1 (1) over bar 02) surface of hematite (alpha-Fe2O3) are exchanged with oxygen from surrounding water vapor within minutes at temperatures below 70 degrees C, while the atomic-scale surface structure is unperturbed by the process. A similar behavior is observed after liquid-water exposure, but the experimental data clearly show most of the exchange happens during desorption of the final monolayer, not during immersion. Density functional theory computations show that the exchange can happen during on-surface diffusion, where the cost of the lattice oxygen extraction is compensated by the stability of an HO-HOH-OH complex. Such insights into lattice oxygen stability are highly relevant for many research fields ranging from catalysis and hydrogen production to geochemistry and paleoclimatology.en
dc.formattextcs
dc.format.extent1-8cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNATURE COMMUNICATIONS. 2021, vol. 12, issue 1, p. 1-8.en
dc.identifier.doi10.1038/s41467-021-26601-4cs
dc.identifier.issn2041-1723cs
dc.identifier.other174929cs
dc.identifier.urihttp://hdl.handle.net/11012/203101
dc.language.isoencs
dc.publisherNature Portfoliocs
dc.relation.ispartofNATURE COMMUNICATIONScs
dc.relation.urihttps://www.nature.com/articles/s41467-021-26601-4cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2041-1723/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectatomic-scale viewen
dc.subjectlow-temperatureen
dc.subjectisotope-exchangeen
dc.subjectoxideen
dc.subjectadsorptionen
dc.subjectsurfaceen
dc.subjectstabilizationen
dc.subjectCOen
dc.subjectdissociationen
dc.subjectdissolutionen
dc.titleRapid oxygen exchange between hematite and water vaporen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-174929en
sync.item.dbtypeVAVen
sync.item.insts2022.01.03 00:58:24en
sync.item.modts2022.01.03 00:19:48en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Molekulární nanostruktury na površíchcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467021266014.pdf
Size:
3.33 MB
Format:
Adobe Portable Document Format
Description:
s41467021266014.pdf