Sequences of Groups, Hypergroups and Automata of Linear Ordinary Differential Operators

Loading...
Thumbnail Image

Authors

Chvalina, Jan
Novák, Michal
Smetana, Bedřich
Staněk, David

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The main objective of our paper is to focus on the study of sequences (finite or countable) of groups and hypergroups of linear differential operators of decreasing orders. By using a suitable ordering or preordering of groups linear differential operators we construct hypercompositional structures of linear differential operators. Moreover, we construct actions of groups of differential operators on rings of polynomials of one real variable including diagrams of actions–considered as special automata. Finally, we obtain sequences of hypergroups and automata. The examples, we choose to explain our theoretical results with, fall within the theory of artificial neurons and infinite cyclic groups.
The main objective of our paper is to focus on the study of sequences (finite or countable) of groups and hypergroups of linear differential operators of decreasing orders. By using a suitable ordering or preordering of groups linear differential operators we construct hypercompositional structures of linear differential operators. Moreover, we construct actions of groups of differential operators on rings of polynomials of one real variable including diagrams of actions–considered as special automata. Finally, we obtain sequences of hypergroups and automata. The examples, we choose to explain our theoretical results with, fall within the theory of artificial neurons and infinite cyclic groups.

Description

Citation

Mathematics. 2021, vol. 9, issue 4, p. 1-16.
https://www.mdpi.com/2227-7390/9/4/319/htm

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO