Detekce anomálií a útoků v audit logu pomocí umělé inteligence

Loading...
Thumbnail Image

Date

Authors

Ludes, Adam

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Tato práce představuje softwarové architektury založené na cloudu, techniky detekce anomálií, strojové učení a analýzu dat za účelem vytvoření modelu pro detekci anomálií v audit lozích z Red Hat OpenShift Container Platform. Jsou představeny statistické metody a analýza časových řad pro detekci anomálií, zatímco jsou implementovány a hodnoceny modely strojového učení a techniky předzpracování dat. Výsledky ukazují omezení tradičních modelů při zpracování anomálií v hluboce vnořených datech, zatímco model zpracovávající přirozený jazyk prokazuje robustní výkon. Tato práce poskytuje cenné poznatky a může být použita jako reference pro výzkum i praxi v oblasti softwarových architektur založených na cloudu, detekce anomálií, strojového učení a analýzy dat.
The thesis explores cloud-native architecture, anomaly detection techniques, machine learning, and data analysis to develop an anomaly detection model for audit logs from the Red Hat OpenShift Container Platform. Statistical methods and time series analysis for anomaly detection are introduced, while machine learning models and preprocessing techniques are implemented and evaluated. The results demonstrate limitations in traditional models for handling anomalies in deeply nested data, while the NLP model shows robust performance. This research provides valuable insights and is a reference for researchers and practitioners in cloud-native architecture, anomaly detection, machine learning, and data analysis.

Description

Citation

LUDES, A. Detekce anomálií a útoků v audit logu pomocí umělé inteligence [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2023.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

bez specializace

Comittee

doc. Ing. Radim Burget, Ph.D. (předseda) doc. Ing. Leoš Boháč, Ph.D. (místopředseda) Ing. Jorge Truffin (člen) doc. Ing. Lukáš Malina, Ph.D. (člen) JUDr. Pavel Loutocký, BA (Hons), Ph.D. (člen) Ing. Marek Sikora (člen)

Date of acceptance

2023-06-07

Defence

Student prezentoval výsledky své práce a komise byla seznámena s posudky. Otázka oponenta: Bylo součástí vývoje metody založené na autoenkodéru také testování úprav v architektuře této sítě? Měly případné úpravy vliv na dosaženou přesnost detekce? Student obhájil diplomovou práci a odpověděl na otázky členů komise a oponenta.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO