Mechanical Properties, Structure and Machinability of the H13 Tool Steel Produced by Material Extrusion

Thumbnail Image
Date
2024-07-08
Authors
Malý, Martin
Kolomý, Štěpán
Kasan, Radek
Bartl, Lukáš
Sedlák, Josef
Zouhar, Jan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Jan Evangelista Purkyne Univ
Altmetrics
Abstract
The study focuses on an evaluation of mechanical properties of the H13 tool steel manufactured by the material extrusion and further comparison with conventionally produced material. Notably, for achieving sufficient surface quality of functional parts further post-processing is required. Thus, a comprehensive investigation, encompassing hardness, ultimate tensile strength (UTS) and yield strength (YS) measurement, microstructure, and machinability was performed. The material extrusion, an increasingly utilized additive manufacturing (AM) technique, offers a viable alternative to the prevalent laser powder bed fusion (LPBF) methods. The investigation revealed that the horizontal orientation of parts yielded the highest mechanical properties, reaching the ultimate tensile strength of approximately 1200 MPa. Additionally, the material exhibited the hardness of 47 HRC in the as-built state. The conventionally produced steel resulted in the higher UTS and YS in comparison to the AM material. The machinability of the as- built material in regard to cutting forces and surface roughness was also evaluated Lower surface roughness was achieved by decreasing feed per tooth. Optically measure material porosity was 6.13 % with maximum pore size 7.43 mu m. The primary objective of this research is to optimize the mechanical properties of H13 tool steel post-printing, with a broader aim to apply the gained insights to improve other materials produced by the material extrusion.
Description
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
Citace PRO