PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides
dc.contributor.author | Tyagi, Atul | cs |
dc.contributor.author | Roy, Sudeep | cs |
dc.contributor.author | Singh, Sanjay | cs |
dc.contributor.author | Semwal, Manoj | cs |
dc.contributor.author | Shasany, Ajit | cs |
dc.contributor.author | Sharma, Ashok | cs |
dc.contributor.author | Provazník, Valentýna | cs |
dc.coverage.issue | 7 | cs |
dc.coverage.volume | 10 | cs |
dc.date.issued | 2021-07-05 | cs |
dc.description.abstract | Emerging infectious diseases (EID) are serious problems caused by fungi in humans and plant species. They are a severe threat to food security worldwide. In our current work, we have developed a support vector machine (SVM)-based model that attempts to design and predict therapeutic plant-derived antifungal peptides (PhytoAFP). The residue composition analysis shows the preference of C, G, K, R, and S amino acids. Position preference analysis shows that residues G, K, R, and A dominate the N-terminal. Similarly, residues N, S, C, and G prefer the C-terminal. Motif analysis reveals the presence of motifs like NYVF, NYVFP, YVFP, NYVFPA, and VFPA. We have developed two models using various input functions such as mono-, di-, and tripeptide composition, as well as binary, hybrid, and physiochemical properties, based on methods that are applied to the main data set. The TPC-based monopeptide composition model achieved more accuracy, 94.4%, with a Matthews correlation coefficient (MCC) of 0.89. Correspondingly, the second-best model based on dipeptides achieved an accuracy of 94.28% under the MCC 0.89 of the training dataset. | en |
dc.format | text | cs |
dc.format.extent | 1-12 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Antibiotics. 2021, vol. 10, issue 7, p. 1-12. | en |
dc.identifier.doi | 10.3390/antibiotics10070815 | cs |
dc.identifier.issn | 2079-6382 | cs |
dc.identifier.orcid | 0000-0001-9569-3273 | cs |
dc.identifier.orcid | 0000-0002-7825-0152 | cs |
dc.identifier.orcid | 0000-0002-3422-7938 | cs |
dc.identifier.other | 173151 | cs |
dc.identifier.researcherid | F-4121-2012 | cs |
dc.identifier.scopus | 000000278250152 | cs |
dc.identifier.scopus | 6701729526 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/203026 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Antibiotics | cs |
dc.relation.uri | https://www.mdpi.com/2079-6382/10/7/815 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2079-6382/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | plant defensins | en |
dc.subject | innate immunity | en |
dc.subject | host defense peptides | en |
dc.subject | antimicrobial peptides | en |
dc.title | PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-173151 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:51 | en |
sync.item.modts | 2025.01.17 18:47:44 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- antibiotics1000815.pdf
- Size:
- 1.94 MB
- Format:
- Adobe Portable Document Format
- Description:
- antibiotics1000815.pdf