Anisotropic Robin problems with indefinite potential
| dc.contributor.author | Papageorgiou, Nikolaos S. | cs |
| dc.contributor.author | Radulescu, Vicentiu | cs |
| dc.contributor.author | Zhang, Jian | cs |
| dc.coverage.issue | 11 | cs |
| dc.coverage.volume | 33 | cs |
| dc.date.issued | 2025-12-03 | cs |
| dc.description.abstract | We considered a nonlinear elliptic boundary value problem driven by the variable (anisotropic) (p, q)-Laplacian with Robin boundary condition and a superlinear reaction which does not satisfy the Ambrosetti-Rabinowitz condition. Using critical point theory, truncation and comparison techniques and critical groups, we showed the existence of five nontrivial smooth solutions all with sign information and ordered. | en |
| dc.format | text | cs |
| dc.format.extent | 6844-6864 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Electronic Research Archive. 2025, vol. 33, issue 11, p. 6844-6864. | en |
| dc.identifier.doi | 10.3934/era.2025302 | cs |
| dc.identifier.issn | 2688-1594 | cs |
| dc.identifier.orcid | 0000-0003-4615-5537 | cs |
| dc.identifier.other | 199828 | cs |
| dc.identifier.researcherid | A-1503-2012 | cs |
| dc.identifier.scopus | 35608668800 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/255857 | |
| dc.language.iso | en | cs |
| dc.publisher | AIMS Press | cs |
| dc.relation.ispartof | Electronic Research Archive | cs |
| dc.relation.uri | https://www.aimspress.com/article/doi/10.3934/era.2025302 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2688-1594/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | variable exponents | en |
| dc.subject | regularity theory | en |
| dc.subject | constant sign and nodal solutions | en |
| dc.subject | critical point theory | en |
| dc.subject | critical groups | en |
| dc.title | Anisotropic Robin problems with indefinite potential | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-199828 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2026.02.10 13:53:54 | en |
| sync.item.modts | 2026.02.10 13:32:33 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.3934_era.2025302.pdf
- Size:
- 545.18 KB
- Format:
- Adobe Portable Document Format
- Description:
- file 10.3934_era.2025302.pdf
