Electrical characteristics of different concentration of silica nanoparticles embedded in epoxy resin

Loading...
Thumbnail Image
Date
2023-12-01
Authors
AL Soud, Ammar
Daradkeh, Samer
Knápek, Alexandr
Holcman, Vladimír
Sobola, Dinara
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Altmetrics
Abstract
In this study, modified epoxy nanocomposite was produced by incorporating SiO2 nanoparticles of 15–30 nm in size, with different concentrations ranging from 1 to 20 wt%. The electrical properties of the epoxy nanocomposite were measured at room temperature in the frequency range of 102–107 Hz. To determine the impact of nanoparticles on the epoxy composition, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS), Fourier transform infrared spectra (FTIR) spectroscopy, and Raman spectroscopy were conducted. With an increase in filler (SiO2 nanoparticles) content, the electrical characteristics of the epoxy nanocomposite exhibited multiple changes. At low concentrations, all electrical properties experienced a notable increase. The epoxy with 15 wt% of SiO2 nanoparticles samples had a lower permittivity, loss number, conductivity, and capacitance than the unfilled epoxy. At medium concentrations (5 to 15 wt%), the formation of immobilized nanolayers has an impact on permittivity, loss number, conductivity, and capacitance, which have decreased; impedance and modulus increased. The initiation of contact between the nanofillers at a concentration of 20 wt% leads to the formation of continuous interfacial conductive pathways, resulting in a dramatic increase in the permittivity, conductivity, and capacitance of the composites, while concurrently reducing impedance.
Description
Citation
PHYSICA SCRIPTA. 2023, vol. 98, issue 1, p. 1-14.
https://iopscience.iop.org/article/10.1088/1402-4896/ad070c
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO