Electrical characteristics of different concentration of silica nanoparticles embedded in epoxy resin

Loading...
Thumbnail Image

Authors

Alsoud, Ammar
Daradkeh, Samer Issa Abdel Razzaq
Knápek, Alexandr
Holcman, Vladimír
Sobola, Dinara

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

In this study, modified epoxy nanocomposite was produced by incorporating SiO2 nanoparticles of 15–30 nm in size, with different concentrations ranging from 1 to 20 wt%. The electrical properties of the epoxy nanocomposite were measured at room temperature in the frequency range of 102–107 Hz. To determine the impact of nanoparticles on the epoxy composition, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS), Fourier transform infrared spectra (FTIR) spectroscopy, and Raman spectroscopy were conducted. With an increase in filler (SiO2 nanoparticles) content, the electrical characteristics of the epoxy nanocomposite exhibited multiple changes. At low concentrations, all electrical properties experienced a notable increase. The epoxy with 15 wt% of SiO2 nanoparticles samples had a lower permittivity, loss number, conductivity, and capacitance than the unfilled epoxy. At medium concentrations (5 to 15 wt%), the formation of immobilized nanolayers has an impact on permittivity, loss number, conductivity, and capacitance, which have decreased; impedance and modulus increased. The initiation of contact between the nanofillers at a concentration of 20 wt% leads to the formation of continuous interfacial conductive pathways, resulting in a dramatic increase in the permittivity, conductivity, and capacitance of the composites, while concurrently reducing impedance.
In this study, modified epoxy nanocomposite was produced by incorporating SiO2 nanoparticles of 15–30 nm in size, with different concentrations ranging from 1 to 20 wt%. The electrical properties of the epoxy nanocomposite were measured at room temperature in the frequency range of 102–107 Hz. To determine the impact of nanoparticles on the epoxy composition, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS), Fourier transform infrared spectra (FTIR) spectroscopy, and Raman spectroscopy were conducted. With an increase in filler (SiO2 nanoparticles) content, the electrical characteristics of the epoxy nanocomposite exhibited multiple changes. At low concentrations, all electrical properties experienced a notable increase. The epoxy with 15 wt% of SiO2 nanoparticles samples had a lower permittivity, loss number, conductivity, and capacitance than the unfilled epoxy. At medium concentrations (5 to 15 wt%), the formation of immobilized nanolayers has an impact on permittivity, loss number, conductivity, and capacitance, which have decreased; impedance and modulus increased. The initiation of contact between the nanofillers at a concentration of 20 wt% leads to the formation of continuous interfacial conductive pathways, resulting in a dramatic increase in the permittivity, conductivity, and capacitance of the composites, while concurrently reducing impedance.

Description

Citation

Physica Scripta. 2023, vol. 98, issue 1, p. 1-14.
https://iopscience.iop.org/article/10.1088/1402-4896/ad070c

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO