Hydrothermal synthesis and characterization of calcium phosphate-based coatings on AZ31 magnesium alloy

Loading...
Thumbnail Image

Authors

Horáková, Lenka
Doskočil, Leoš
Wasserbauer, Jaromír
Buchtík, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Sciendo
Altmetrics

Abstract

This study aims to analyze the influence of process parameters used for hydrothermal synthesis of CaP coatings on their properties and to improve their corrosion resistance and biocompatibility compared to the substrat AZ31. The parameters monitored were deposition time, pH of the reaction mixture, and concentration of precursors in the reaction mixture. For the deposited CaP coatings on AZ31 magnesium alloy, the surface morphology and the number of structural defects were evaluated using scanning electron microscopy. Electrochemical corrosion properties were evaluated using polarization techniques in Hank’s solution. The results showed that the best properties were obtained for the sample prepared in a reaction mixture at 120 °C, pH 5 for a deposition time of 120 min, when the concentration of precursors in the reaction mixture was 0.30 mol/l Ca(NO3)2·4H2O and 0.28 mol/l NH4H2PO4. Under these conditions, the best electrochemical corrosion properties were achieved.
This study aims to analyze the influence of process parameters used for hydrothermal synthesis of CaP coatings on their properties and to improve their corrosion resistance and biocompatibility compared to the substrat AZ31. The parameters monitored were deposition time, pH of the reaction mixture, and concentration of precursors in the reaction mixture. For the deposited CaP coatings on AZ31 magnesium alloy, the surface morphology and the number of structural defects were evaluated using scanning electron microscopy. Electrochemical corrosion properties were evaluated using polarization techniques in Hank’s solution. The results showed that the best properties were obtained for the sample prepared in a reaction mixture at 120 °C, pH 5 for a deposition time of 120 min, when the concentration of precursors in the reaction mixture was 0.30 mol/l Ca(NO3)2·4H2O and 0.28 mol/l NH4H2PO4. Under these conditions, the best electrochemical corrosion properties were achieved.

Description

Citation

Koroze a ochrana materiálu. (on-line) Asociace korozních inženýrů JK . 2023, vol. 67, issue 1, p. 8-13.
https://sciendo.com/article/10.2478/kom-2023-0002

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO