Stable distributions for feature extraction from speech signals

but.event.date23.04.2015cs
but.event.titleStudent EEICT 2015cs
dc.contributor.authorMžourek, Z.
dc.date.accessioned2015-08-25T08:43:07Z
dc.date.available2015-08-25T08:43:07Z
dc.date.issued2015cs
dc.description.abstractThe aim of this paper is to introduce class of stable distributions as a potentional tool for statistical modelling of features extracted from speech signals. Alpha-stable distributions are generalization of the Gaussian distribution therefore they can be used in modeling of more variety of different problems. It is described why can stable distributions be useful in speech processing and potential useful applications are proposed for feature extractions and reduction.en
dc.formattextcs
dc.format.extent505-509cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 21st Conference STUDENT EEICT 2015. s. 505-509. ISBN 978-80-214-5148-3cs
dc.identifier.isbn978-80-214-5148-3
dc.identifier.urihttp://hdl.handle.net/11012/43052
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 21st Conference STUDENT EEICT 2015en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectstable distributionen
dc.subjectfeature extractionen
dc.subjectfeature reductionen
dc.subjectspeech processingen
dc.titleStable distributions for feature extraction from speech signalsen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eeict2015-505-mzourek.pdf
Size:
531.9 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: