Complex 3D-Printed Heat Transfer Surfaces: An Assessment and Comparison of Tools for Implicit Geometry Modelling

dc.contributor.authorZálešák, Martincs
dc.contributor.authorKlimeš, Lubomírcs
dc.contributor.authorCharvát, Pavelcs
dc.contributor.authorŠpiláček, Michalcs
dc.coverage.issue1cs
dc.coverage.volume94cs
dc.date.issued2024-12-30cs
dc.description.abstractIn the design of heat exchangers (HXs), an obvious effort is to maximise the heat transfer efficiency and performance while keeping the dimensions and costs of HXs as low as possible. Extended surfaces are a common technique for heat transfer enhancement, leading to an enlarged surface for the interaction of heat transfer fluids. Fins represent the most frequent extended surfaces used in the HX design. In the past, the shape of fins used in HXs was rather simple due to the limited capabilities of the available production technology. However, the rapid development of additive manufacturing (AM) and 3D printing has opened new possibilities in design and production. The AM allows for the production of HXs comprising heat transfer surfaces with a complex topology, which can possess a very high surface-to-volume ratio. In this respect, triply periodic minimal surfaces (TPMS) seem to be very promising. Gyroids and lidinoids are typical examples of such TPMS. Computer simulations are a common approach in the design of HXs. Simulations of HXs with such complex surfaces are, however, challenging. In the case of computational fluid dynamics (CFD) tools, the necessary input is the computational mesh, which is closely related to the domain geometry. The creation of the domain geometry adopting TMPS is rather demanding as TMPS are defined by implicit mathematical relationships and standard computer-aided design (CAD) modellers cannot be utilised for this purpose. The study presents an assessment and comparison of available computer tools for the implicit modelling and preparation of the TPMSbased geometry with implicit modelling. The results indicate that both commercial as well open-source tools exist for this purpose, enabling different levels of flexibility and user-friendliness.en
dc.formattextcs
dc.format.extent229-234cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationChemical Engineering Transactions. 2024, vol. 94, issue 1, p. 229-234.en
dc.identifier.doi10.3303/CET24114039cs
dc.identifier.issn2283-9216cs
dc.identifier.orcid0000-0001-6697-2644cs
dc.identifier.orcid0000-0003-2133-3587cs
dc.identifier.orcid0000-0003-1571-923Xcs
dc.identifier.orcid0000-0002-5044-7906cs
dc.identifier.other194169cs
dc.identifier.researcheridAAD-2534-2019cs
dc.identifier.researcheridC-3489-2013cs
dc.identifier.researcheridA-7527-2014cs
dc.identifier.researcheridAAE-6247-2019cs
dc.identifier.scopus55259815100cs
dc.identifier.scopus54789389900cs
dc.identifier.scopus56082792100cs
dc.identifier.urihttp://hdl.handle.net/11012/249954
dc.language.isoencs
dc.publisherAIDIC Servizi S.r.l.cs
dc.relation.ispartofChemical Engineering Transactionscs
dc.relation.urihttps://www.cetjournal.it/cet/24/114/039.pdfcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2283-9216/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecttriply periodic minimal surfacesen
dc.subjectgyroiden
dc.subjectadditive manufacturingen
dc.titleComplex 3D-Printed Heat Transfer Surfaces: An Assessment and Comparison of Tools for Implicit Geometry Modellingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/EH/EH22_008/0004634cs
sync.item.dbidVAV-194169en
sync.item.dbtypeVAVen
sync.item.insts2025.03.11 10:36:56en
sync.item.modts2025.02.18 09:31:59en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Energetický ústavcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CET24114039_final.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
file CET24114039_final.pdf