Modelling of packing density for particle composites design

Loading...
Thumbnail Image

Authors

Koutný, Ondřej
Kratochvíl, Jiří
Švec, Jiří
Bednárek, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Effective packing of solid particles is one of the main topics in the field of ceramics, powder metallurgy and concrete technology. In these material sectors it is necessary to maximise or optimise the packing density of particles. Therefore, it is necessary to obtain the ability not even to measure the packing density effectively but especially to predict it and affect it with sufficient accuracy. Despite of large experiences in field of metallurgy and ceramics technology, it is still relatively difficult to predict packing density in the concrete technology. Prediction is based on de Larrard linear packing theory expanded by third parameterincluding wedging effect of particles to the form of 3-parameter packing model. In this paper the model is calibrated for fillers using in Particle composites technology with respect to their granulometry, mainly aimed on UHPC technology. Calibration is based on correlation with experimentally determined values of packing density of model particles mixtures. Successful optimization of particular system composition in concrete technology then could lead not even to decrease of final price but it has also a beneficial influence mainly on mechanical properties and durability of final product.
Effective packing of solid particles is one of the main topics in the field of ceramics, powder metallurgy and concrete technology. In these material sectors it is necessary to maximise or optimise the packing density of particles. Therefore, it is necessary to obtain the ability not even to measure the packing density effectively but especially to predict it and affect it with sufficient accuracy. Despite of large experiences in field of metallurgy and ceramics technology, it is still relatively difficult to predict packing density in the concrete technology. Prediction is based on de Larrard linear packing theory expanded by third parameterincluding wedging effect of particles to the form of 3-parameter packing model. In this paper the model is calibrated for fillers using in Particle composites technology with respect to their granulometry, mainly aimed on UHPC technology. Calibration is based on correlation with experimentally determined values of packing density of model particles mixtures. Successful optimization of particular system composition in concrete technology then could lead not even to decrease of final price but it has also a beneficial influence mainly on mechanical properties and durability of final product.

Description

Citation

Procedia Engineering. 2016, vol. 151, issue 1, p. 198-205.
https://www.sciencedirect.com/science/article/pii/S187770581631774X

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO