Effects of elevated temperature on the behaviour of concrete beams reinforced with fiber reinforced polymers

Loading...
Thumbnail Image

Authors

Prokeš, Jan
Čairović, Iva
Girgle, František
Daněk, Petr
Štěpánek, Petr

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Fiber reinforced polymer (FRP) rebars have increasing popularity in the construction industry all around the world although steel rebars are widely used for reinforcing of the concrete so far. FRP bars, which have higher tensile strength compared to steel rebars with the same nominal diameter under normal conditions, are composed of resin matrix and fibers. In this paper, the load-bearing capacity of FRP reinforced concrete after elevated temperature exposition are present. The results are compared with concrete sample with steel reinforcement. Commercially produced glass FRP (GFRP) and carbon FRP (CFRP) rebars with sand coatings surface treatments were implemented in concrete beam and subjected to four-point bending load. The residual flexural strength of reinforced concrete after heating to 1000°C was obtained and evaluated and compared to results of non-heated elements. The results indicate that fire resistance of FRP reinforced beams can reach at least 60 minutes according the standard ČSN EN 13501-2.
Fiber reinforced polymer (FRP) rebars have increasing popularity in the construction industry all around the world although steel rebars are widely used for reinforcing of the concrete so far. FRP bars, which have higher tensile strength compared to steel rebars with the same nominal diameter under normal conditions, are composed of resin matrix and fibers. In this paper, the load-bearing capacity of FRP reinforced concrete after elevated temperature exposition are present. The results are compared with concrete sample with steel reinforcement. Commercially produced glass FRP (GFRP) and carbon FRP (CFRP) rebars with sand coatings surface treatments were implemented in concrete beam and subjected to four-point bending load. The residual flexural strength of reinforced concrete after heating to 1000°C was obtained and evaluated and compared to results of non-heated elements. The results indicate that fire resistance of FRP reinforced beams can reach at least 60 minutes according the standard ČSN EN 13501-2.

Description

Citation

IOP Conference Series: Materials Science and Engineering. 2021, vol. 1039, p. 1-6.
https://iopscience.iop.org/article/10.1088/1757-899X/1039/1/012008

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO