Reconstruction and enhancement techniques for overcoming occlusion in facial recognition

dc.contributor.authorPleško, Filipcs
dc.contributor.authorGoldmann, Tomášcs
dc.contributor.authorMalinka, Kamilcs
dc.coverage.issue1cs
dc.coverage.volume2025cs
dc.date.issued2025-05-20cs
dc.description.abstractFacial occlusions in surveillance footage can obscure important features, preventing facial recognition systems from identifying people. This work focuses on reconstructing these missing facial parts using Generative Adversarial Networks (GANs) to improve facial recognition accuracy while maintaining a low false acceptance rate. Additionally, we investigate how the generated images can be further enhanced using various image enhancement methods to boost recognition accuracy. To evaluate the results, we conduct experiments with widely used face embedding models, such as QMagFace and ArcFace, to determine whether image reconstruction and enhancement improve face recognition accuracy.en
dc.description.abstractFacial occlusions in surveillance footage can obscure important features, preventing facial recognition systems from identifying people. This work focuses on reconstructing these missing facial parts using Generative Adversarial Networks (GANs) to improve facial recognition accuracy while maintaining a low false acceptance rate. Additionally, we investigate how the generated images can be further enhanced using various image enhancement methods to boost recognition accuracy. To evaluate the results, we conduct experiments with widely used face embedding models, such as QMagFace and ArcFace, to determine whether image reconstruction and enhancement improve face recognition accuracy.en
dc.formattextcs
dc.format.extent1-21cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationEURASIP Journal on Image and Video Processing. 2025, vol. 2025, issue 1, p. 1-21.en
dc.identifier.doi10.1186/s13640-025-00670-7cs
dc.identifier.issn1687-5176cs
dc.identifier.orcid0009-0000-1238-4062cs
dc.identifier.orcid0000-0002-0286-2523cs
dc.identifier.orcid0000-0002-9009-2193cs
dc.identifier.other193306cs
dc.identifier.researcheridKSL-9159-2024cs
dc.identifier.researcheridAAB-5046-2022cs
dc.identifier.scopus57222737290cs
dc.identifier.scopus24824985000cs
dc.identifier.urihttp://hdl.handle.net/11012/255186
dc.language.isoencs
dc.relation.ispartofEURASIP Journal on Image and Video Processingcs
dc.relation.urihttps://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-025-00670-7cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1687-5176/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectface recognitionen
dc.subjectface reconstructionen
dc.subjectimage enhancementen
dc.subjectArcFaceen
dc.subjectMagFaceen
dc.subjectQMagFaceen
dc.subjectGANen
dc.subjectface recognition
dc.subjectface reconstruction
dc.subjectimage enhancement
dc.subjectArcFace
dc.subjectMagFace
dc.subjectQMagFace
dc.subjectGAN
dc.titleReconstruction and enhancement techniques for overcoming occlusion in facial recognitionen
dc.title.alternativeReconstruction and enhancement techniques for overcoming occlusion in facial recognitionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-193306en
sync.item.dbtypeVAVen
sync.item.insts2026.01.07 12:53:58en
sync.item.modts2026.01.07 12:33:18en
thesis.grantorVysoké učení technické v Brně. Fakulta informačních technologií. Ústav inteligentních systémůcs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s13640025006707.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description:
file s13640025006707.pdf