Reconstruction and enhancement techniques for overcoming occlusion in facial recognition
| dc.contributor.author | Pleško, Filip | cs |
| dc.contributor.author | Goldmann, Tomáš | cs |
| dc.contributor.author | Malinka, Kamil | cs |
| dc.coverage.issue | 1 | cs |
| dc.coverage.volume | 2025 | cs |
| dc.date.issued | 2025-05-20 | cs |
| dc.description.abstract | Facial occlusions in surveillance footage can obscure important features, preventing facial recognition systems from identifying people. This work focuses on reconstructing these missing facial parts using Generative Adversarial Networks (GANs) to improve facial recognition accuracy while maintaining a low false acceptance rate. Additionally, we investigate how the generated images can be further enhanced using various image enhancement methods to boost recognition accuracy. To evaluate the results, we conduct experiments with widely used face embedding models, such as QMagFace and ArcFace, to determine whether image reconstruction and enhancement improve face recognition accuracy. | en |
| dc.description.abstract | Facial occlusions in surveillance footage can obscure important features, preventing facial recognition systems from identifying people. This work focuses on reconstructing these missing facial parts using Generative Adversarial Networks (GANs) to improve facial recognition accuracy while maintaining a low false acceptance rate. Additionally, we investigate how the generated images can be further enhanced using various image enhancement methods to boost recognition accuracy. To evaluate the results, we conduct experiments with widely used face embedding models, such as QMagFace and ArcFace, to determine whether image reconstruction and enhancement improve face recognition accuracy. | en |
| dc.format | text | cs |
| dc.format.extent | 1-21 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | EURASIP Journal on Image and Video Processing. 2025, vol. 2025, issue 1, p. 1-21. | en |
| dc.identifier.doi | 10.1186/s13640-025-00670-7 | cs |
| dc.identifier.issn | 1687-5176 | cs |
| dc.identifier.orcid | 0009-0000-1238-4062 | cs |
| dc.identifier.orcid | 0000-0002-0286-2523 | cs |
| dc.identifier.orcid | 0000-0002-9009-2193 | cs |
| dc.identifier.other | 193306 | cs |
| dc.identifier.researcherid | KSL-9159-2024 | cs |
| dc.identifier.researcherid | AAB-5046-2022 | cs |
| dc.identifier.scopus | 57222737290 | cs |
| dc.identifier.scopus | 24824985000 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/255186 | |
| dc.language.iso | en | cs |
| dc.relation.ispartof | EURASIP Journal on Image and Video Processing | cs |
| dc.relation.uri | https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-025-00670-7 | cs |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1687-5176/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
| dc.subject | face recognition | en |
| dc.subject | face reconstruction | en |
| dc.subject | image enhancement | en |
| dc.subject | ArcFace | en |
| dc.subject | MagFace | en |
| dc.subject | QMagFace | en |
| dc.subject | GAN | en |
| dc.subject | face recognition | |
| dc.subject | face reconstruction | |
| dc.subject | image enhancement | |
| dc.subject | ArcFace | |
| dc.subject | MagFace | |
| dc.subject | QMagFace | |
| dc.subject | GAN | |
| dc.title | Reconstruction and enhancement techniques for overcoming occlusion in facial recognition | en |
| dc.title.alternative | Reconstruction and enhancement techniques for overcoming occlusion in facial recognition | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-193306 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2026.01.07 12:53:58 | en |
| sync.item.modts | 2026.01.07 12:33:18 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav inteligentních systémů | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s13640025006707.pdf
- Size:
- 2.22 MB
- Format:
- Adobe Portable Document Format
- Description:
- file s13640025006707.pdf
