Object Tracking Using Kalman Filter
but.event.date | 23.04.2015 | cs |
but.event.title | Student EEICT 2015 | cs |
dc.contributor.author | Sehnoutka, M. | |
dc.date.accessioned | 2015-08-25T08:42:54Z | |
dc.date.available | 2015-08-25T08:42:54Z | |
dc.date.issued | 2015 | cs |
dc.description.abstract | The goal of this paper is to describe design and implementation of system which is supposed to track objects in video sequence. Kalman filter is used for modeling object movement and prediction of its trajectory in moments when the object is hidden. System can use two different models. One is supposed to track objects that are moving with constant velocity and second one with constant acceleration. | en |
dc.format | text | cs |
dc.format.extent | 162-164 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 21st Conference STUDENT EEICT 2015. s. 162-164. ISBN 978-80-214-5148-3 | cs |
dc.identifier.isbn | 978-80-214-5148-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/42963 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 21st Conference STUDENT EEICT 2015 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Machine vision | en |
dc.subject | Kalman filter | en |
dc.subject | Object tracking | en |
dc.title | Object Tracking Using Kalman Filter | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |